
IBM PowerAI Vision

Version 1.1.3

PowerAI Vision Guide

IBM

IBM PowerAI Vision

Version 1.1.3

PowerAI Vision Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 137.

This edition applies to IBM PowerAI Vision Version 1.1.3 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright IBM Corporation 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document v
Highlighting v
ISO 9000. v

IBM PowerAI Vision overview 1
Use cases 2
What's new 7
IBM PowerAI Vision Trial 8

PowerAI Vision concepts 11

Planning for PowerAI Vision 13

License Management in IBM License
Metric Tool 17

Installing, upgrading, and uninstalling
PowerAI Vision 19
Prerequisites for installing PowerAI Vision 19
Installing PowerAI Vision stand-alone 23
Installing PowerAI Vision with IBM Cloud Private 27
Upgrading PowerAI Vision 29
Uninstalling PowerAI Vision stand-alone 31

Checking the application and
environment 33
Checking the application Docker images in
standalone installation 33
Checking the application status in an ICP
installation 34
Checking Kubernetes services status 35
Checking Kubernetes node status 37
Checking Kubernetes storage status 41
Checking application deployment 43
Checking system GPU status 47

Logging in to PowerAI Vision 49

Working with the user interface 51

Training and working with models . . . 55
Creating and working with data sets 55

Data set considerations 56
Importing images with COCO annotations . . . 58

Labeling objects 58

Training a model 62
Working with custom models 65
Base models included with PowerAI Vision . . 73

Deploying a trained model 73
PowerAI Vision REST APIs 74
Testing a model 74
Refining a model 75

Automatically labeling objects 75
Augmenting the data set 77

Importing and exporting PowerAI Vision
information 78
Understanding metrics 79

Using PowerAI Vision 83
Scenario: Detecting objects in images 83
Scenario: Detecting objects in a video 86
Scenario: Classifying images 91
Scenario: Detecting segmented objects in images . . 92

Administering PowerAI Vision. 95
Managing users 95
Installing a new SSL certificate in PowerAI Vision
stand-alone 97
PowerAI Vision utilities 98

PowerAI Vision Inference Server . . . 103
Inference on embedded edge devices 109

Troubleshooting and contacting
support 111
Troubleshooting known issues - PowerAI Vision
standard install 111
Troubleshooting known issues - PowerAI Vision
Inference Server 124
Troubleshooting known issues - IBM Cloud Private
install 125
Gather PowerAI Vision logs and contact support 127
Getting fixes from Fix Central 129
Contacting IBM Support. 129

Notices 131
Trademarks 132
Terms and conditions for product documentation 133

Notices 137
Trademarks 139

© Copyright IBM Corp. 2018 iii

iv IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

About this document

This document provides you with information about installing and using IBM® PowerAI Vision to create
a dataset that contains images or videos.

Highlighting
The following highlighting conventions are used in this document:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are
predefined by the system. Bold highlighting also identifies graphical objects, such as buttons, labels, and
icons that the you select.

Italics Identifies parameters for actual names or values that you supply.

Monospace Identifies examples of specific data values, examples of text similar to what you might see displayed,
examples of portions of program code similar to what you might write as a programmer, messages from
the system, or text that you must type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 2018 v

vi IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

IBM PowerAI Vision overview

The IBM PowerAI Vision platform, built on cognitive infrastructure, is a new generation of video/image
analysis platforms. The platform offers built-in deep learning models that learn to analyze images and
video streams for classification and object detection.

PowerAI Vision includes tools and interfaces for anyone with limited skills in deep learning technologies.
You can use PowerAI Vision to easily label images and videos that can be used to train and validate a
model. The model can then be validated and deployed in customized solutions that demand image
classification and object detection.

The following are the main features of PowerAI Vision:

Streamlined model training
You can use existing models that are already trained as starting point to reduce the time required
to train models and improve trained results.

Single-click model deployment
After you create a training model, you can deploy an API with one click. You can then develop
applications based on the model that you deployed.

Data set management and labeling
You can manage both raw and labeled data.

Video object detection and labeling assistance
Videos that you import can be scanned for objects and the objects can be automatically labeled.

© Copyright IBM Corp. 2018 1

Architecture overview

The architecture of PowerAI Vision consists of hardware, resource management, deep learning
computation, service management, and application service layers. Each layer is built around
industry-standard technologies.

Table 1. Overview of the architecture layers

Architectural Layer Description

Infrastructure Layer Consists of hardware systems that support PowerAI Vision, including virtual machines (containers), accelerators
(GPUs/FPGAs), storage systems, networks, and so on.

Resource Management Layer Coordinates and schedules all computing resources.

Deep Learning Calculation Layer Consists of deep learning algorithms, including data processing modules, model training modules, and prediction modules.

Service Management Layer Manages user projects in a graphical interface, including image preprocessing, data annotation management, data set
management, training task management, model management, and API management.

Application Service Layer Located on the top of the PowerAI Vision platform, it is responsible for managing all application-related services, including
image labeling and preprocessing services, video annotation services, customized image classification services, and
customized object detection services.

Use cases
IBM PowerAI Vision includes these main use cases to demonstrate its capabilities:

Static image classification
Determine whether an image belongs to one or more classes of images based on overall image
contents. For example, determining the species of dog in an image.

2 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Static image detection
Determine and label the contents of an image based on user-defined data labels. For example,
finding and labeling all dogs in an image.

Video object detection
Determine and label the contents of an uploaded video or live video stream based on
user-defined data labels. For example, finding and labeling all dogs in a video.

Figure 1. Detecting the overall contents of an image, based on custom training data

Figure 2. Detecting and labeling instances of objects within an image based on custom training data

Overview 3

Static image segmentation
Determine and label the precise location of objects in an image based on user-defined data labels
and arbitrary shapes. For example, find and label the precise boundary of all leaves in an image.

Figure 3. Detecting and labeling instances of objects within an image based on custom training data

4 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Auto label an image or video
After deploying a model for object detection, you can improve its accuracy by using the Auto
label function. This function improves the model's accuracy by quickly adding more data to the
data set.

System-added tags are green, while manually added tags are blue.

Figure 4. Detecting and labeling the precise edges of an object within an image based on custom training data

Overview 5

Data augmentation
After deploying a model, you can improve the model by using data augmentation to add
modified images to the data set, then retraining the model. Data augmentation is the use of filters,
such as blur and rotate, to create new versions of existing images. When you use data
augmentation, a new data set is created that contains all of the existing images, plus the newly
generated images.

Figure 5. Auto labeled video

Figure 6. Augmented video

6 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

What's new
The following functions, features, and support have been added for PowerAI Vision Version 1.1.3:

PowerAI Vision Non-production edition
You can now try PowerAI Vision for one year with the Non-production edition. This edition does
not allow you to export data sets or models.

GPU sharing for deployed models
The full version of PowerAI Vision now supports GPU sharing for deployed models. Deploying
multiple models to a single GPU allows you to get the most out of your processing power. GPU
sharing is supported only for GoogleNet and Faster R-CNN models. For more information, see
“Deploying a trained model” on page 73.

Train with a Detectron model
You can now use a Detectron model to train a model. This allows you to train with objects that
have been labeled as non-rectangular shapes. For details, see “Training a model” on page 62.

Transfer learning
You can use a model that was previously trained with PowerAI Vision as a base model to train
new models. For details, see “Training a model” on page 62.

Use non-rectangular shapes when labeling
When labeling objects in a data set that will be used to train a Detectron model, you can use
non-rectangular shapes. Non-rectangular labeling is supported in images, video frames, and with
auto labeling. If you label objects with non-rectangular shapes and train the data set using a
different model, associated rectangular bounding boxes are used. For more information, see
“Labeling objects” on page 58.

Support of COCO annotations
Images with COCO annotations can be imported. Only object detection annotations are
supported. For more information, see “Importing images with COCO annotations” on page 58.

Downloadable heat map
You can download the heat map that is generated when testing an image with a deployed model.

Improved performance for inference
Speeds when using the image classification (GoogLeNet) and object detection (Faster R-CNN)
models for inference are improved. The improvement is especially significant for high-resolution
images.

Improvements to the user interface
The following changes have been made to the user interface to improve your experience:
v Heat map overlay: When testing an image with a deployed model trained for classification, the

heat map is layered on top of the image. You can then use a slider to set the opacity. This
allows you to easily identify which areas of the image the algorithm is focusing on.

v Confidence threshold slider: When testing an image with a deployed model, you can use the
confidence slider to eliminate object labels that have low confidence.

v GPU information: You can view how many GPUs the system can access and how many of
those are in use on the Models or Trained Models page. See “Working with the user interface”
on page 51 for details.

v Improvements to labeling

– The working image is given more screen space.
– New Objects panel consolidates information about labeled objects and has new settings for

labeling.
– Labels on the image are shortened to two characters; with a corresponding list in the Objects

panel.

Overview 7

– You can use standard keyboard shortcuts to copy a shape that you traced and paste it
elsewhere in the same image or to any image in the image carousel.

– You can undo and redo shape creation, edits, and deletions via standard keyboard shortcuts.
– A Paste previous button was added when labeling videos. Clicking Paste previous copies

all the labels from the previous video frame and paste them into the current frame.
– New settings let you customize your labeling process. For example, you can change the

outline color, hide previously drawn outlines, show or hide labels, and so on.
– Keyboard shortcuts have been added to speed up image navigation and enhance shape

management.
– The list of labeled objects can be filtered.

IBM PowerAI Vision Trial
PowerAI Vision offers a trial version of the product. It has full functionality, but is not licensed for
production use.
v “Installing the trial version”
v “What happens when the trial expires?” on page 9
v “Upgrading to the full version of PowerAI Vision” on page 9

Installing the trial version

Attention: You cannot install PowerAI Vision stand-alone on the same system that has the following
software installed:
v IBM Data Science Experience (DSX)
v IBM Cloud Private
v Any other Kubernetes based applications
1. You must complete the following installation prerequisites steps before you install PowerAI Vision.

a. Complete all steps in the “Prerequisites for installing PowerAI Vision” on page 19 topic.
b. Your system must have a proper subscription and repository that provides you with updated

packages. For information, see the Red Hat Subscription Manager documentation.
c. Turn on Extra Packages for Enterprise Linux (EPEL). For information, see the EPEL website.

2. Go to PowerAI Vision Trial download site. Download the .tar file and the .rpm files as instructed.
3. Decompress the product tar file, and run the installation command for the platform you are installing

on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

4. From the directory that contains the downloaded tar file, run the appropriate script as root or with
sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
5. (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script:

sudo /opt/powerai-vision/sbin/firewall.sh

6. After the installation is complete, you can start PowerAI Vision by running this script:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values,
see “Managing users” on page 95.

8 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-initial-setup#sect-initial-setup-subsciption-manager
http://fedoraproject.org/wiki/EPEL
http://ibm.biz/vision_trial

You must read and accept the license agreement that is displayed before you can use PowerAI Vision.
It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this
script:
sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the helm.sh status vision script, you can verify which PowerAI Vision
components are available by locating the Deployment section and identifying that the AVAILABLE
column has a value of 1 for each component. The following is an example of the output from the
helm.sh status vision script that shows all components are available:

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-mongodb 1 1 1 1 3h
powerai-vision-portal 1 1 1 1 3h
powerai-vision-postgres 1 1 1 1 3h
powerai-vision-taskanaly 1 1 1 1 3h
powerai-vision-ui 1 1 1 1 3h
powerai-vision-video-nginx 1 1 1 1 3h
powerai-vision-video-portal 1 1 1 1 3h
powerai-vision-video-rabmq 1 1 1 1 3h
powerai-vision-video-redis 1 1 1 1 3h
powerai-vision-video-test-nginx 1 1 1 1 3h
powerai-vision-video-test-portal 1 1 1 1 3h
powerai-vision-video-test-rabmq 1 1 1 1 3h
powerai-vision-video-test-redis 1 1 1 1 3h

What happens when the trial expires?

You can see how much time is left in the trial by reviewing the countdown in the header of the user
interface. When the timed trial expires, the product will cease to work, including any running training,
inference, import, or export operations. However, if you purchase a license, you will automatically regain
access to all of your data sets, models, and so on.

If the trial expires and you want to purchase PowerAI Vision, follow the instructions in “Upgrading to
the full version of PowerAI Vision.”

If the trial expires and you do not decide to purchase PowerAI Vision, follow these steps:
1. Remove previously installed images by running the following script:

sudo /opt/powerai-vision/bin/purge_image.sh 1.1.3.0

Optionally remove all product data by running the following script. This will remove data sets,
models, and so on:
sudo /opt/powerai-vision/bin/purge_data.sh

2. Remove PowerAI Vision by running the following command:
v For RHEL:

sudo yum remove powerai-vision

v For Ubuntu:
sudo dpkg --remove powerai-vision

3. Delete the data directory by running the following command:
sudo rm -rf /opt/powerai-vision/

Upgrading to the full version of PowerAI Vision

When you are ready to purchase PowerAI Vision, you can buy a license from PowerAI Vision
Marketplace. Use one of these methods to upgrade to the full version. Your data is not deleted when the
product is uninstalled. You will automatically regain access to all of your data sets, models, and so on.
1. Stop the current instance of PowerAI Vision by running the following script:

Overview 9

https://www.ibm.com/us-en/marketplace/ibm-powerai-vision
https://www.ibm.com/us-en/marketplace/ibm-powerai-vision

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

2. Obtain and install PowerAI Vision:
Install PowerAI Vision from IBM Passport Advantage

a. Download the product tar file from the IBM Passport Advantage website.
b. Decompress the product tar file, and run the installation command for the platform you are

installing on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

c. From the directory that contains the downloaded tar file, run the appropriate script as root or with
sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
d. After the installation is complete, you can start PowerAI Vision by running this script:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

Install PowerAI Vision from AAS

a. Download the product tar.gz file from Advanced Administration System (AAS). This system is
also called Entitled Software Support (ESS).

b. Unzip and untar the tar.gz file by running this command. The install files are extracted to
powerai-vision-aas-1.1.3.1/.
gunzip -c file_name.tar.gz | tar -xvf

-

c. Decompress the product tar file, and run the installation command for the platform you are
installing on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

d. From the directory that contains the extracted tar file, run this script as root or with sudo
privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
e. After the installation is complete, you can start PowerAI Vision by running this script:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

Related concepts:
“Uninstalling PowerAI Vision stand-alone” on page 31
You must uninstall PowerAI Vision stand-alone on your system, before you can install IBM Cloud™

Private, IBM Data Science Experience Local, or other Kubernetes-based applications.

10 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/software/passportadvantage/pao_customer.html

PowerAI Vision concepts

PowerAI Vision provides an easy to use graphical user interface (GUI) that you can use to quickly create
computer vision-related artificial intelligence (AI) solutions.

You must be familiar with the following concepts before you can start using PowerAI Vision:

Data set
A data set is a collection of images and videos that you uploaded to PowerAI Vision. An example
of a data set would be images of cars.

Category
A category is used to classify an image. The image can belong to only a single category. An
example of a category for a data set that contains cars would be car manufacturers (Toyota,
Honda, Chevy, and Ford).

Object
An object is used to identify specific items in an image or specific frames in a video. You can
label multiple objects in an image or a frame in a video. An example of objects in an image of
cars might be wheel, headlights, and windshield.

Model A model is a set of tuned algorithms and that produces a predicted output. Models are trained
based on the input that is provided by a data set to classify images or video frames, or find
objects in images or video frames.

© Copyright IBM Corp. 2018 11

12 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Planning for PowerAI Vision

You must meet the software and hardware requirements and understand the supported file types before
you can install PowerAI Vision.
v “Hardware requirements”
v “Software requirements”
v “Networking requirements”
v “Disk space requirements” on page 14
v “Supported web browsers” on page 14
v “Image support” on page 14
v “Supported video types” on page 15
v “Limitations” on page 15

Hardware requirements

PowerAI Vision requires the following hardware:
v POWER8 S822LC (8335-GTB) or POWER9 AC922 with at least one NVIDIA NVLink capable GPU
v 128 GB of memory
v 40 GB of storage
v Ethernet network interface
v 40 GB of storage. See “Disk space requirements” on page 14 for details.
v If Optimized for speed (tiny YOLO v2) is selected when training the model, there are multiple options

for deploying the model for testing. Deploying a model to a Xilinx FPGA requires the Xilinx Alveo
U200 Accelerator card.

Software requirements

You must install the following software before you install PowerAI Vision:

Linux

v Red Hat Enterprise Linux (RHEL) 7.6 (little endian).
v Ubuntu 18.04 or later.

NVIDIA CUDA
10.1 or later drivers. For information, see the NVIDIA CUDA Toolkit website.

Docker

v Docker must be installed. The recommended version is 1.13.1 or later. Version 1.13.1 is installed
with RHEL 7.6.

v Ubuntu - Docker CE or EE 18.06.01

Networking requirements

Your environment must meet the following networking requirements:
v A default route must be specified on the host system.

– For instructions to do this on Ubuntu, refer to the IP addressing section in the Ubuntu Network
Configuration. Search for the steps to configure and verify the default gateway.

– For instructions to do this on Red Hat Enterprise Linux (RHEL), refer to 2.2.4 Static Routes and the
Default Gateway in the Red Hat Customer Portal.

© Copyright IBM Corp. 2018 13

https://developer.nvidia.com/cuda-toolkit
https://help.ubuntu.com/lts/serverguide/network-configuration.html.en#ip-addressing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-networkscripts-static-routes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-networkscripts-static-routes

v For RHEL, Docker 0 must be in a trusted firewall zone. If it is not in a trusted firewall zone, modify
the RHEL settings as follows:
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service

v IPv4 port forwarding must be enabled.
If IPv4 port forwarding is not enabled, run the /sbin/sysctl -w net.ipv4.conf.all.forwarding=1
command. For more information about port forwarding with Docker, see UCP requires IPv4 IP
Forwarding in the Docker success center.

v IPv6 must be enabled.

Disk space requirements

PowerAI Vision has the following storage requirements for the initial product installation and for the data
sets that will be managed by the product.

Standalone installation

v /var - The product installation requires at least 25 Gb of space in the /var file system for the
product Docker images. PowerAI Vision also generates log information in this file system.
Recommendation: If you want to minimize the root (/) file system, make sure that /var has its
own volume. The /var file system should have at least 50 Gb of space, more if additional
applications are being run on the system that use this file system for log data and so on.

v /opt - PowerAI Vision data sets are stored in this file system. The storage needs will vary
depending on the data sets and the contents - i.e., video data can require large amounts of
storage.
Recommendation: If you want to minimize the root (/) file system, make sure that /opt has its
own volume. The /opt file system should have at least 40 Gb of space, although this value
might be more depending on your data sets.

IBM Cloud Private installation
The PowerAI Vision product will use the configured persistent storage for the deployment, the
requirements are documented in Installing PowerAI Vision with IBM Cloud Private.

Supported web browsers

The following web browsers are supported:
v Google Chrome Version 60, or later
v Firefox Quantum 59.0, or later

Image support
v The following image formats are supported:

– JPEG
– PNG

v Images with COCO annotations are supported. For details, see “Importing images with COCO
annotations” on page 58.

v The models used by PowerAI Vision have limitations on the size and resolution of images. If the
original data is high resolution, then the user must consider:
– If the images do not need fine detail for classification or object detection, they should be

down-sampled to 1-2 megapixels.
– If the images do require fine detail, they should to be divided into smaller images of 1-2 megapixels

each.

14 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://success.docker.com/article/ipv4-forwarding
https://success.docker.com/article/ipv4-forwarding
https://www.ibm.com/support/knowledgecenter/SSRU69_1.1.1/base/vision_install_cloud.html

– High resolution images will be scaled to a maximum of 1000 x 600 pixels.
– For image classification, images are scaled to 224 x 224 pixels.
– For object detection with Detectron, all images are scaled to 1333 x 800 pixels.
– For object detection with tiny YOLO V2, all images are scaled to 416 x 416. However, the original

aspect ratio is maintained. That is, the longest edge is scaled to 416 pixels and, if necessary, black
bands are added to the shorter side to make it 416 pixels.

– For object detection with FR-CNN, image segmentation, or video, anything over 1000 x 600 pixels is
down-sampled so that the longest edge will fit.

– There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files.
You can, however upload 24 GB of files, then upload more after the original upload completes.

Supported video types

The following video formats are supported:

Can be played in the PowerAI Vision GUI:

v Ogg Vorbis (.ogg)
v VP8 or VP9 (.webm)
v H.264 encoded videos with MP4 format (.mp4)

Supported by API only:

v Matroska (.mkv)
v Audio Video Interleave (.avi)
v Moving Picture Experts Group (.mpg or .mpeg2)

Not supported:
Videos that are encoded with the H.265 codec.

Limitations

The following are the limitations for IBM PowerAI Vision 1.1.3:
v If you import a .zip file into an existing data set, the .zip file cannot contain a directory structure.
v PowerAI Vision uses an entire GPU when you are training a dataset. Multiple GoogleNet or Faster

R-CNN models can be deployed to a single GPU. Other types of models take an entire GPU when
deployed.
The number of active GPU tasks (model training and deployment) that you can run, at the same time,
depends on the number of GPUs on your Power® System server. You must verify that there are enough
available GPUs on the system for the desired workload. The number of available GPUs is displayed on
the user interface.

v You cannot install PowerAI Vision stand-alone on the same system that already has IBM Data Science
Experience (DSX), IBM Watson Studio Local, IBM Watson Machine Learning Accelerator, IBM Cloud
Private, or any other Kubernetes or Spectrum Conductor based applications installed.

v You must uninstall the technology preview version of PowerAI Vision before you can install PowerAI
Vision 1.1.3. For more information, see the “Uninstalling PowerAI Vision stand-alone” on page 31
topic.

Planning 15

16 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

License Management in IBM License Metric Tool

The IBM PowerAI Vision product is licensed per Virtual Server ("Learn about software licensing - Virtual
Server"). When the product is installed, a software license metric (SLM) tag file is created to track usage
with the IBM License Metric Tool.

The license metric tag is an XML file, with extension .slmtag. The IBM License Metric Tool discovers the
license metric tag file and provides license consumption reports that, compared with license entitlements,
allow IBM to verify license compliance. The tag file is human-readable and can therefore be interpreted
by individuals for audit purposes.

The license metric tag file has a standard format and consists of two parts:

Header information
Contains:

SchemaVersion
Identifies the schema version of the license metric tag file.

SoftwareIdentity
Identifies the software identity instance that provides license metric data. Contains:
v Name

Name of the software identity - IBM PowerAI Vision Training and Inference or IBM
PowerAI Vision Inference for Servers

v PersistentId

Unique identifier of the software identity. For IBM PowerAI Vision 1.1.3, the assigned
PersistentId is:
– IBM PowerAI Vision Training and Inference - ebb8d2e1bd62488c8c196f568857ae38
– IBM PowerAI Vision Inference for Servers - 297aaa94baa441e0ad91a609b24083b7

v InstanceId

Identifies the instance of the software identity that provides metrics by the path of the
software for which SLMTag is generated - /opt/powerai-vision.

Metrics information

IBM PowerAI Vision 1.1.3 is licensed per Virtual Server, so the values are:
v Type - VIRTUAL_SERVER

v Period - StartTime is the time of install/deploy, EndTime is set to date '9999-12-31' so that the
IBM License Metric Tool will understand that it as a perpetual license.

© Copyright IBM Corp. 2018 17

https://www-01.ibm.com/software/passportadvantage/about_software_licensing.html#virtualserver
https://www-01.ibm.com/software/passportadvantage/about_software_licensing.html#virtualserver

18 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Installing, upgrading, and uninstalling PowerAI Vision

Use the information in these topics to work with the product installation. You can install PowerAI Vision
by using the command line (stand-alone) or by using IBM Cloud Private.

Only the most current level of each release of IBM PowerAI Vision should be installed, where version
numbers are in the format version.release.modification.

After installing PowerAI Vision, you can optionally change the SSL certificate by following the steps in
this topic: “Installing a new SSL certificate in PowerAI Vision stand-alone” on page 97.

Prerequisites for installing PowerAI Vision
Before you can install either PowerAI Vision stand-alone or PowerAI Vision with IBM Cloud Private, you
must configure Red Hat Enterprise Linux (RHEL), enable the Fedora Extra Packages for Enterprise Linux
(EPEL) repository, and install NVIDIA CUDA drivers.

Note: Neither IBM PowerAI nor Watson Machine Learning Accelerator (WML Accelerator) are required
for running PowerAI Vision.
v “Red Hat Enterprise Linux operating system and repository setup”
v “Ubuntu operating system and repository setup” on page 20
v “NVIDIA Components: IBM POWER9 specific udev rules (Red Hat only)” on page 20
v “Install the GPU driver (Red Hat)” on page 21
v “Installing the GPU driver (Ubuntu)” on page 21
v “Verify the GPU driver” on page 22
v “Installing docker, nvidia-docker2” on page 23

Red Hat Enterprise Linux operating system and repository setup
1. Enable common, optional, and extra repo channels.

IBM POWER8:
sudo subscription-manager repos --enable=rhel-7-for-power-le-optional-rpms

sudo subscription-manager repos --enable=rhel-7-for-power-le-extras-rpms

sudo subscription-manager repos --enable=rhel-7-for-power-le-rpms

IBM POWER9:
sudo subscription-manager repos --enable=rhel-7-for-power-9-optional-rpms

sudo subscription-manager repos --enable=rhel-7-for-power-9-extras-rpms

sudo subscription-manager repos --enable=rhel-7-for-power-9-rpms

x86:
sudo subscription-manager repos --enable=rhel-7-servers-optional-rpms

sudo subscription-manager repos --enable=rhel-7-servers-extras-rpms

sudo subscription-manager repos --enable=rhel-7-servers-rpms

2. Install packages needed for the installation.
sudo yum -y install wget nano bzip2

3. Enable Fedora Project EPEL (Extra Packages for Enterprise Linux repo:
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

sudo rpm -ihv epel-release-latest-7.noarch.rpm

4. Load the latest kernel or do a full update:

© Copyright IBM Corp. 2018 19

v Load the latest kernel:
sudo yum update kernel kernel-devel kernel-tools kernel-tools-libs kernel-bootwrapper

reboot

v Do a full update:
sudo yum update

sudo reboot

5. Set up nvidia-docker 2.0 to allow PowerAI Vision containers to use the NVIDIA GPUs. For
instructions, see Using nvidia-docker 2.0 with RHEL 7

Ubuntu operating system and repository setup
1. Install packages needed for the installation

sudo apt-get install -y wget nano apt-transport-https ca-certificates curl software-properties-common

2. Load the latest kernel
sudo apt-get install linux-headers-$(uname -r)
sudo reboot

3. Or do a full update
sudo apt-get update
sudo apt-get dist-upgrade
sudo reboot

NVIDIA Components: IBM POWER9™ specific udev rules (Red Hat only)
1. Copy the /lib/udev/rules.d/40-redhat.rules file to the directory for user overridden rules.

sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d/

2. Edit the /etc/udev/rules.d/40-redhat.rules file.
sudo nano /etc/udev/rules.d/40-redhat.rules

3. Comment out the entire "Memory hotadd request" section and save the change:
Memory hotadd request

#SUBSYSTEM!="memory", ACTION!="add", GOTO="memory_hotplug_end"

#PROGRAM="/bin/uname -p", RESULT=="s390*", GOTO="memory_hotplug_end"

#ENV{.state}="online"

#PROGRAM="/bin/systemd-detect-virt", RESULT=="none", ENV{.state}="online_movable"

#ATTR{state}=="offline", ATTR{state}="$env{.state}"

#LABEL="memory_hotplug_end"

4. Optionally, delete the first line of the file, since the file was copied to a directory where it cannot be
overwritten.
do not edit this file, it will be overwritten on update

5. Restart the system for the changes to take effect.
sudo reboot

Remove previously installed CUDA and NVIDIA drivers

Before installing the updated GPU driver, uninstall any previously-installed CUDA and NVIDIA drivers.
Follow these steps:
1. Remove all CUDA Toolkit and GPU driver packages.

20 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://developer.ibm.com/linuxonpower/2018/09/19/using-nvidia-docker-2-0-rhel-7/

You can display installed CUDA and driver packages by running these commands:
rpm -qa | egrep ’cuda.*(9-2|10-0)’

rpm -qa | egrep ’(cuda|nvidia).*(396|410)\.’

Verify the list and remove with yum remove.
2. Remove any CUDA Toolkit and GPU driver repository packages.

These should have been included in step 1, but you can confirm with this command:
rpm -qa | egrep ’(cuda|nvidia).*repo’

Use yum remove to remove any that remain.
3. Clean the yum repository:

sudo yum clean all

4. Remove cuDNN and NCCL:
sudo rm -rf /usr/local/cuda /usr/local/cuda-9.2 /usr/local/cuda-10.0

5. Reboot the system to unload the GPU driver
sudo shutdown -r now

Install the GPU driver (Red Hat)

Install the driver by following these steps:
1. Download the NVIDIA GPU driver:
v Go to NVIDIA Driver Download.
v Select Product Type: Tesla

v Select Product Series: P-Series (for Tesla P100) or V-Series (for Tesla V100).
v Select Product: Tesla P100 or Tesla V100

v Select Operating System: Linux POWER LE RHEL 7 for POWER or Linux 64-bit RHEL7 for x86,
depending on your cluster architecture. Click Show all Operating Systems if your version is not
available.

v Select CUDA Toolkit: 10.1

v Click SEARCH to go to the download link.
v Click Download to download the driver.

2. Install CUDA and the GPU driver.

Note: For AC922 systems: OS and system firmware updates are required before you install the latest
GPU driver.
sudo rpm -ivh nvidia*driver-local-repo-rhel7-418.*.rpm

sudo yum install cuda-drivers

3. Set nvidia-persistenced to start at boot
sudo systemctl enable nvidia-persistenced

4. Restart to activate the driver.

Installing the GPU driver (Ubuntu)

The Deep Learning packages require the GPU driver packages from NVIDIA.

Install the GPU driver by following these steps:
1. Download the NVIDIA GPU driver.
v Go to NVIDIA Driver Download.
v Select Product Type: Tesla

v Select Product Series: V-Series

Installing, upgrading, and uninstalling 21

https://www.nvidia.com/Download/index.aspx
https://www.nvidia.com/Download/index.aspx

v Select Product: Tesla V100

v Select Operating System: Linux POWER LE Ubuntu 18.04 for POWER or Linux 64-bit Ubuntu
18.04 for x86, depending on your cluster architecture. Click Show all Operating Systems if your
version is not available.

v Select CUDA Toolkit: 10.1

v Click SEARCH to go to the download link.
v Click Download to download the driver.

2. Ensure the kernel headers are installed and match the running kernel. Compare the outputs of:
$ rpm -qa kernel-devel kernel-headers

and
$ uname -r

Ensure that the kernel-devel and kernel-headers package versions exactly match the version of the
running kernel. If they are not identical, bring them in sync as appropriate:
v Install missing packages.
v Update downlevel packages.
v Reboot the system if the packages are newer than the active kernel.

3. Install the GPU driver repository and cuda-drivers:
sudo dpkg -i nvidia*driver-local-repo-ubuntu1804-418.*.deb

sudo apt-get update

sudo apt-get install cuda-drivers

4. Set nvidia-persistenced to start at boot
sudo systemctl enable nvidia-persistenced

5. Reboot the system

Verify the GPU driver

Verify that the CUDA drivers are installed by running the /usr/bin/nvidia-smi application.

Example output

22 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

nvidia-smi
Fri Mar 15 12:23:50 2019
+---+
| NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000002:01:00.0 Off | 0 |
| N/A 50C P0 109W / 300W | 2618MiB / 16280MiB | 43% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000003:01:00.0 Off | 0 |
| N/A 34C P0 34W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P100-SXM2... On | 0000000A:01:00.0 Off | 0 |
| N/A 48C P0 44W / 300W | 5007MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P100-SXM2... On | 0000000B:01:00.0 Off | 0 |
| N/A 36C P0 33W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 114476 C /opt/miniconda2/bin/python 2608MiB |
| 2 114497 C /opt/miniconda2/bin/python 958MiB |
| 2 114519 C /opt/miniconda2/bin/python 958MiB |
| 2 116655 C /opt/miniconda2/bin/python 2121MiB |
| 2 116656 C /opt/miniconda2/bin/python 958MiB |
+---+

For help understanding the output, see “Checking system GPU status” on page 47.

Installing docker, nvidia-docker2

Use these steps in to install docker and nvidia-docker 2.
1. For Ubuntu platforms, a Docker runtime must be installed. If there is no Docker runtime installed yet,

install Docker-CE on Ubuntu.
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo add-apt-repository "deb [arch=ppc64el] https://download.docker.com/linux/ubuntu bionic stable"

sudo apt-get update

sudo apt-get install docker-ce=18.06.1~ce~3-0~ubuntu

Note:

The nvidia-docker run command must be used with docker-ce (in other words, an Ubuntu host) to
leverage the GPUs from within a container.

Installing PowerAI Vision stand-alone
You use the command line to install PowerAI Vision stand-alone.

PowerAI Vision stand-alone installation prerequisites

You must complete the following installation prerequisites steps before you install PowerAI Vision.
1. Complete all steps in the “Prerequisites for installing PowerAI Vision” on page 19 topic.
2. Your system must have a proper subscription and repository that provides you with updated

packages. For information, see the Red Hat Subscription Manager documentation.
3. Turn on Extra Packages for Enterprise Linux (EPEL). For information, see the EPEL website.

Installing, upgrading, and uninstalling 23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/chap-initial-setup#sect-initial-setup-subsciption-manager
http://fedoraproject.org/wiki/EPEL

Attention: You cannot install PowerAI Vision stand-alone on the same system that has the following
software installed:
v IBM Data Science Experience (DSX)
v IBM Cloud Private
v Any other Kubernetes based applications
v “Install PowerAI Vision from IBM Passport Advantage”
v “Install PowerAI Vision from AAS ” on page 25
v “Install PowerAI Vision trial mode” on page 26

Install PowerAI Vision from IBM Passport Advantage

To install PowerAI Vision stand-alone, complete the following steps:
1. Download the product tar file from the IBM Passport Advantage website.
2. Decompress the product tar file, and run the installation command for the platform you are installing

on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

3. From the directory that contains the downloaded tar file, run the appropriate script as root or with
sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
4. (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script:

sudo /opt/powerai-vision/sbin/firewall.sh

5. After the installation is complete, you can start PowerAI Vision by running this script:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values,
see “Managing users” on page 95.
You must read and accept the license agreement that is displayed before you can use PowerAI Vision.
It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this
script:
sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the helm.sh status vision script, you can verify which PowerAI Vision
components are available by locating the Deployment section and identifying that the AVAILABLE
column has a value of 1 for each component. The following is an example of the output from the
helm.sh status vision script that shows all components are available:

24 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/software/passportadvantage/pao_customer.html

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-mongodb 1 1 1 1 3h
powerai-vision-portal 1 1 1 1 3h
powerai-vision-postgres 1 1 1 1 3h
powerai-vision-taskanaly 1 1 1 1 3h
powerai-vision-ui 1 1 1 1 3h
powerai-vision-video-nginx 1 1 1 1 3h
powerai-vision-video-portal 1 1 1 1 3h
powerai-vision-video-rabmq 1 1 1 1 3h
powerai-vision-video-redis 1 1 1 1 3h
powerai-vision-video-test-nginx 1 1 1 1 3h
powerai-vision-video-test-portal 1 1 1 1 3h
powerai-vision-video-test-rabmq 1 1 1 1 3h
powerai-vision-video-test-redis 1 1 1 1 3h

6. Install any available fix packs. For instructions see “Getting fixes from Fix Central” on page 129.

Install PowerAI Vision from AAS
1. Download the product tar.gz file from Advanced Administration System (AAS). This system is also

called Entitled Software Support (ESS).
2. Unzip and untar the tar.gz file by running this command. The install files are extracted to

powerai-vision-aas-1.1.3.1/.
gunzip -c file_name.tar.gz | tar -xvf

-

3. Decompress the product tar file, and run the installation command for the platform you are installing
on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

4. From the directory that contains the extracted tar file, run this script as root or with sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
5. (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script:

sudo /opt/powerai-vision/sbin/firewall.sh

6. After the installation is complete, you can start PowerAI Vision by running this script:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values,
see “Managing users” on page 95.
You must read and accept the license agreement that is displayed before you can use PowerAI Vision.
It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this
script:
sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the helm.sh status vision script, you can verify which PowerAI Vision
components are available by locating the Deployment section and identifying that the AVAILABLE
column has a value of 1 for each component. The following is an example of the output from the
helm.sh status vision script that shows all components are available:

Installing, upgrading, and uninstalling 25

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-mongodb 1 1 1 1 3h
powerai-vision-portal 1 1 1 1 3h
powerai-vision-postgres 1 1 1 1 3h
powerai-vision-taskanaly 1 1 1 1 3h
powerai-vision-ui 1 1 1 1 3h
powerai-vision-video-nginx 1 1 1 1 3h
powerai-vision-video-portal 1 1 1 1 3h
powerai-vision-video-rabmq 1 1 1 1 3h
powerai-vision-video-redis 1 1 1 1 3h
powerai-vision-video-test-nginx 1 1 1 1 3h
powerai-vision-video-test-portal 1 1 1 1 3h
powerai-vision-video-test-rabmq 1 1 1 1 3h
powerai-vision-video-test-redis 1 1 1 1 3h

7. Install any available fix packs. For instructions see “Getting fixes from Fix Central” on page 129.

Install PowerAI Vision trial mode
1. Go to PowerAI Vision Trial download site. Download the .tar file and the .rpm files as instructed.
2. Decompress the product tar file, and run the installation command for the platform you are installing

on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

3. From the directory that contains the downloaded tar file, run the appropriate script as root or with
sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
4. (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script:

sudo /opt/powerai-vision/sbin/firewall.sh

5. After the installation is complete, you can start PowerAI Vision by running this script:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values,
see “Managing users” on page 95.
You must read and accept the license agreement that is displayed before you can use PowerAI Vision.
It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this
script:
sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the helm.sh status vision script, you can verify which PowerAI Vision
components are available by locating the Deployment section and identifying that the AVAILABLE
column has a value of 1 for each component. The following is an example of the output from the
helm.sh status vision script that shows all components are available:

26 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://ibm.biz/vision_trial

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-mongodb 1 1 1 1 3h
powerai-vision-portal 1 1 1 1 3h
powerai-vision-postgres 1 1 1 1 3h
powerai-vision-taskanaly 1 1 1 1 3h
powerai-vision-ui 1 1 1 1 3h
powerai-vision-video-nginx 1 1 1 1 3h
powerai-vision-video-portal 1 1 1 1 3h
powerai-vision-video-rabmq 1 1 1 1 3h
powerai-vision-video-redis 1 1 1 1 3h
powerai-vision-video-test-nginx 1 1 1 1 3h
powerai-vision-video-test-portal 1 1 1 1 3h
powerai-vision-video-test-rabmq 1 1 1 1 3h
powerai-vision-video-test-redis 1 1 1 1 3h

Related concepts:
“Logging in to PowerAI Vision” on page 49
Follow these steps to log in to PowerAI Vision.

Installing PowerAI Vision with IBM Cloud Private
If you have more than one IBM Power Systems server available, you can use IBM Cloud Private 2.1.0.3 or
3.1.0 to install a single instance of PowerAI Vision that has access to all the Power Systems GPUs across
the entire cluster.

If you have only a single IBM Power Systems server and do not have an existing IBM Cloud Private
environment, you should use the PowerAI Vision stand-alone process. For more information, see the
“Installing PowerAI Vision stand-alone” on page 23 topic.

To install PowerAI Vision with IBM Cloud Private, complete the following steps:

Notes:

v If IBM Cloud Private is already installed and configured in your environment, you can go to step 4.
v The links to IBM Cloud Private go to the 3.1.0 Knowledge Center. To go to a different version, click the

link, then click Change version.
1. Install IBM Cloud Private. For more information, see the Installing IBM Cloud Private topic.
2. Install the IBM Cloud CLI. For more information, see the Install IBM Cloud CLI topic.
3. Authenticate to your master node in your IBM Cloud Private environment. For more information,

see the Configuring authentication for the Docker CLI topic.
To log in to the IBM Cloud Private cluster, run the appropriate command:
v In an IBM Cloud Private 2.1.0 environment, run:

bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

v In an IBM Cloud Private 3.1.0 environment, run:
cloudctl login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

4. Set up your system to install your IBM Cloud Private deployment into a non-default namespace. It is
recommended that you do not install into the default namespace for security reasons.

Important: Install each distinct deployment of IBM Cloud Private into a unique namespace.
a. Create an appropriate ClusterRoleBinding to enable PowerAI Vision to query Kubernetes. To

create this, copy the below text into a crb.yaml file, where CustomNamespace is your custom
namespace name:
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: CustomNamespace-crb

Installing, upgrading, and uninstalling 27

https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/installing/install.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_cluster/install_cli.html
https://www.ibm.com/support/knowledgecenter/SSBS6K_3.1.0/manage_images/configuring_docker_cli.html

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin

subjects:
-

kind: ServiceAccount
name: default
namespace: CustomNamespace

b. Run the following command:
kubectl create -f crb.yaml

5. Download the appropriate tar file from IBM Passport Advantage.
6. Untar the powerai-vision-ppa-1.1.3.0.tar tar file. It contains install packages for the standalone

product, as well as the tar file with the containers that must be loaded for the IBM Cloud Private
installation.

7. To make PowerAI Vision available in IBM Cloud Private catalog, run the appropriate command:
v IBM Cloud Private 2.1.0.3:

bx pr load-ppa-archive --archive file_name.tar [--clustername <cluster_CA_domain>]

v IBM Cloud Private 3.1.0 or later:
cloudctl catalog load-archive --archive file_name.tar --registry <icp full host name>:8500/<namespace>

Where:

--registry <value>
Lets you specify the docker registry that the images will be pushed to.

Example:
mycluster-icp:8500/<namespace>

--clustername <cluster_CA_domain>
Lets you specify the certificate authority (CA) domain. If you did not specify a CA domain,
the default value is mycluster.icp.

8. Review the Chart README for PowerAI Vision carefully. It documents prerequisites, requirements,
and limitations of PowerAI Vision in IBM Cloud Private.

9. Verify that you have a minimum of 40 GB of persistent storage. If your IBM Cloud Private
installation has dynamic provisioned storage, you can use it for your 40 GB of persistent storage. To
manually create persistent volumes in IBM Cloud Private, see the Creating a Persistent Volume topic.
After you create the persistent volume, you must make the volume sharable across all nodes in the
cluster.

Note: Do not use HostPath for the persistent storage unless you have only one node in your cluster.
See Creating a Persistent Volume in the IBM Cloud Private documentation for details.

10. To install PowerAI Vision from the IBM Cloud Private catalog, from the navigation menu select
Catalog > Helm Charts.

11. In the search box, enter vision and click powerai-vision. Review the information.
12. Click Configure and enter information for the Release name and the Namespace fields. The default

user name is admin and the default password is passw0rd. For instructions to change these values,
see “Managing users” on page 95. For information about namespaces, see Namespaces in the IBM
Cloud Private Knowledge Center.

13. Click Install.
14. For information about accessing PowerAI Vision, see Logging into PowerAI Vision.

Important: NFS volumes should have the “no_root_squash” flag set in /etc/exports:
/var/nfs *(rw,no_root_squash,no_subtree_check)

28 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/software/passportadvantage/pao_customer.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0.2/manage_cluster/create_volume.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/manage_cluster/create_volume.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.0/user_management/projects.html

Upgrading PowerAI Vision
When upgrading to the latest version of PowerAI Vision, your data from the previous release will not be
lost, as long as you are upgrading to the same type of install. For example; from the stand-alone version
to the stand-alone version. However, you will need to delete and redeploy any deployed models after
upgrading.
v Upgrade the stand-alone version
v Upgrade PowerAI Vision with IBM Cloud Private

Upgrade the stand-alone version

1. Stop the current instance of PowerAI Vision by running the following script:
sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

2. Obtain and install PowerAI Vision:
Install PowerAI Vision from IBM Passport Advantage

a. Download the product tar file from the IBM Passport Advantage website.
b. Decompress the product tar file, and run the installation command for the platform you are

installing on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

You will be prompted to accept the upgrade of the product if you are running an interactive
install.

c. From the directory that contains the downloaded tar file, run the appropriate script as root or with
sudo privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
d. After the installation is complete, you can start PowerAI Vision by running this script:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. Users will be preserved from the
previous installation on upgrade. For instructions to manage existing users, and to learn how to
create new users, see “Managing users” on page 95.

e. Install any available fix packs. For instructions see “Getting fixes from Fix Central” on page 129.
Install PowerAI Vision from AAS

a. Download the product tar.gz file from Advanced Administration System (AAS). This system is
also called Entitled Software Support (ESS).

b. Unzip and untar the tar.gz file by running this command. The install files are extracted to
powerai-vision-aas-1.1.3.1/.
gunzip -c file_name.tar.gz | tar -xvf

-

c. Decompress the product tar file, and run the installation command for the platform you are
installing on.

RHEL
sudo yum install ./<file_name>.rpm

Ubuntu
sudo dpkg -i ./<file_name>.deb

Installing, upgrading, and uninstalling 29

https://www.ibm.com/software/passportadvantage/pao_customer.html

d. From the directory that contains the extracted tar file, run this script as root or with sudo
privileges:
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.
e. After the installation is complete, you can start PowerAI Vision by running this script:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. . Users will be preserved from the
previous installation on upgrade. For instructions to manage existing users, and to learn how to
create new users, see “Managing users” on page 95.

f. Install any available fix packs. For instructions see “Getting fixes from Fix Central” on page 129.
3. Delete any deployed GoogLeNet (Classification) and FR-CNN (object detection) models deployed in

the previous version of the product to allow redeployment and GPU resource sharing. Until they are
deleted, the models will attempt to deploy and will fail. To delete a deployed model, click Deployed
Models. Next, select the model that you want to delete and click Delete. The trained model is not
deleted from PowerAI Vision.

4. Redeploy trained models as necessary.
a. Click Models from the menu.
b. Select the model you want to deploy and click Deploy.
c. Specify a name for the model, and for models that were trained with the Optimized for speed

(tiny YOLO v2) model, choose the accelerator to deploy to. You can choose GPU, CPU, or Xilinx
FPGA - 16 bit (technology preview).

d. Click Deploy. The Deployed Models page is displayed. When the model has been deployed, the
status column displays Ready.

e. Click the deployed model to get the API endpoint, to view details about the model, such as the
owner and the accuracy, and to test other videos or images against the model.

Upgrade PowerAI Vision with IBM Cloud Private

1. Download the product tar file from the IBM Passport Advantage website.
2. To make PowerAI Vision available in IBM Cloud Private catalog, run the appropriate command:
v IBM Cloud Private 2.1.0.3:

bx pr load-ppa-archive --archive file_name.tar [--clustername <cluster_CA_domain>]

v IBM Cloud Private 3.1.0 or later:
cloudctl catalog load-archive --archive file_name.tar --registry <icp full host name>:8500/<namespace>

Where:

--registry <value>
Lets you specify the docker registry that the images will be pushed to.

Example:
mycluster-icp:8500/<namespace>

--clustername <cluster_CA_domain>
Lets you specify the certificate authority (CA) domain. If you did not specify a CA domain,
the default value is mycluster.icp.

3. Navigate to your Helm Release. Click Upgrade and the upgrade to the new PowerAI Vision images
starts.

Note: The upgrade process can take some time to complete.

30 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/software/passportadvantage/pao_customer.html

4. As part of the upgrade process, PowerAI Vision is restarted and a user named admin is created with a
password of passw0rd. Users will be preserved from the previous installation on upgrade. For
instructions to manage existing users, and to learn how to create new users, see “Managing users” on
page 95.

Uninstalling PowerAI Vision stand-alone
You must uninstall PowerAI Vision stand-alone on your system, before you can install IBM Cloud
Private, IBM Data Science Experience Local, or other Kubernetes-based applications.

To uninstall PowerAI Vision, complete the following steps:

Note: If you run the following commands, all the data that you gathered is deleted. Export your data
sets and models before you run the following commands.
1. Stop the current instance of PowerAI Vision by running the following script:

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

2. Remove previously installed images by running the following script:
sudo /opt/powerai-vision/bin/purge_image.sh 1.1.3.0

Optionally remove all product data by running the following script. This will remove data sets,
models, and so on:
sudo /opt/powerai-vision/bin/purge_data.sh

3. Remove PowerAI Vision by running the following command:
v For RHEL:

sudo yum remove powerai-vision

v For Ubuntu:
sudo dpkg --remove powerai-vision

4. Delete the data directory by running the following command:
sudo rm -rf /opt/powerai-vision/

5. Verify that PowerAI Vision was uninstalled by running the following command:
v For RHEL:

rpm -q powerai-vision

v For Ubuntu:
dpkg -l powerai-vision

Installing, upgrading, and uninstalling 31

32 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Checking the application and environment

After installation of PowerAI Vision, you can check the status of the application and environment by
using commands documented in these topics. The Kubernetes commands helm.sh and kubectl.sh are
installed in the bin directory of the product install path. (default: /opt/powerai-vision).

Checking the application Docker images in standalone installation
Space limitations or Kubernetes garbage collection activities can result in PowerAI Vision Docker images
not being available in the Docker repository on a system.
v “Using docker images to validate PowerAI Vision Docker image availability”
v “Loading missing images” on page 34

Using docker images to validate PowerAI Vision Docker image availability

When load_images.sh runs successfully, it indicates that the following images were successfully loaded:
/opt/powerai-vision/bin/load_images.sh -f <path>/powerai-vision-images-1.1.3.0.tar | grep -i loaded

[INFO] Waiting for docker loads to complete. This will take some time...
Loaded image: nvidia/k8s-device-plugin:1.11
Loaded image: coredns/coredns:1.2.6
Loaded image: gcr.io/google_containers/pause:3.1
Loaded image: powerai-vision-tiller:2.12.0
Loaded image: gcr.io/google_containers/hyperkube:v1.13.0
Loaded image: quay.io/kubernetes-ingress-controller/nginx-ingress-controller-ppc64le:0.20.0
Loaded image: gcr.io/google_containers/etcd:3.3.10
Loaded image: powerai-vision-video-nginx:1.1.3.0
Loaded image: powerai-vision-video-test-portal:1.1.3.0
Loaded image: powerai-vision-models:1.1.3.0
Loaded image: postgres:9.6.8
Loaded image: powerai-vision-taskanaly:1.1.3.0
Loaded image: powerai-vision-dnn-detectron:1.1.3.0
Loaded image: powerai-vision-preprocessing:1.1.3.0
Loaded image: powerai-vision-dnn-microservices:1.1.3.0
Loaded image: powerai-vision-dnn-custom:1.1.3.0
Loaded image: powerai-vision-ui:1.1.3.0
Loaded image: powerai-vision-portal:1.1.3.0
Loaded image: powerai-vision-video-test-nginx:1.1.3.0
Loaded image: powerai-vision-video-portal:1.1.3.0
Loaded image: powerai-vision-video-redis:1.1.3.0
Loaded image: powerai-vision-video-rabbitmq:1.1.3.0
Loaded image: powerai-vision-keycloak:1.1.3.0
Loaded image: powerai-vision-usermgt:1.1.3.0
Loaded image: powerai-vision-fpga-device-plugin:1.1.3.0
Loaded image: powerai-vision-mongodb:1.1.3.0
Loaded image: powerai-vision-dnn-edge:1.1.3.0

[INFO] SUCCESS> All images loaded successfully.

At any time, these images should also show in the output of Docker images:
$ sudo docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
powerai-vision-video-nginx 1.1.3.0 d386df55bbc2 4 weeks ago 179MB
powerai-vision-video-portal 1.1.3.0 6aa55d2e3955 4 weeks ago 1.53GB
powerai-vision-video-test-nginx 1.1.3.0 99973630c16b 4 weeks ago 156MB
powerai-vision-video-test-portal 1.1.3.0 2c98ca0b5df5 4 weeks ago 1.52GB
powerai-vision-ui 1.1.3.0 c20d08178281 4 weeks ago 150MB

© Copyright IBM Corp. 2018 33

powerai-vision-keycloak 1.1.3.0 15a65d2d0930 4 weeks ago 494MB
powerai-vision-dnn-edge 1.1.3.0 93a4b845eddd 4 weeks ago 4.67GB
powerai-vision-dnn-custom 1.1.3.0 c620a5e433f6 4 weeks ago 5.64GB
powerai-vision-preprocessing 1.1.3.0 45216045eda7 4 weeks ago 1.8GB
powerai-vision-taskanaly 1.1.3.0 2d0c24984c7f 4 weeks ago 295MB
powerai-vision-dnn-microservices 1.1.3.0 384f5f362a5e 4 weeks ago 4.57GB
powerai-vision-dnn-detectron 1.1.3.0 dd015ae0b4f7 4 weeks ago 7.84GB
powerai-vision-fpga-device-plugin 1.1.3.0 3721f6731112 4 weeks ago 943MB
powerai-vision-portal 1.1.3.0 055db7f4d216 5 weeks ago 313MB
powerai-vision-models 1.1.3.0 7799c735142e 5 weeks ago 1.89GB
powerai-vision-video-rabbitmq 1.1.3.0 dba5c311aa8b 5 weeks ago 295MB
powerai-vision-video-redis 1.1.3.0 ae1e734744f1 5 weeks ago 188MB
powerai-vision-usermgt 1.1.3.0 addd5bae5ab6 6 weeks ago 301MB
powerai-vision-mongodb 1.1.3.0 219547699e5b 6 weeks ago 390MB
powerai-vision-tiller 2.12.0 8a925bb46988 4 months ago 80.7MB
gcr.io/google_containers/hyperkube v1.13.0 02fc0a6f63cc 4 months ago 639MB
gcr.io/google_containers/etcd 3.3.10 af050d2caadf 4 months ago 311MB
coredns/coredns 1.2.6 9dda08c8b15f 5 months ago 38.9MB
quay.io/kubernetes-ingress-controller/nginx-ingress-controller-ppc64le 0.20.0 9aadc57947cb 6 months ago 582MB
nvidia/k8s-device-plugin 1.11 5c02dafe13ad 8 months ago 93.9MB
postgres 9.6.8 7bf8f906163b 11 months ago 284MB
gcr.io/google_containers/pause 3.1 1652adb11bd5 16 months ago 666kB

Loading missing images

If any of the PowerAI Vision Docker images are not available in the Docker repository, application
failures can occur. In this case, run load_images.sh again to load any of the images that are missing.

Checking the application status in an ICP installation
Before you can use the kubectl commands to check the application status, you must log in to the IBM
Cloud Private cluster.
v In an IBM Cloud Private 2.1.0 environment, run:

bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

v In an IBM Cloud Private 3.1.0 environment, run:
cloudctl login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

Example

In the following example, cloudctl is used to log in to the IBM Cloud Private cluster icp1 with master
node icp1.domain.com as the user admin, to access the default namespace where the PowerAI Vision
application is installed:
cloudctl login -a https://icp1.domain.com:8443 --skip-ssl-validation -u admin

Password>
Authenticating...
OK

Targeted account icp1 Account (id-icp1-account)

Select a namespace:
1. cert-manager
2. default
3. ibmcom
4. istio-system
5. kube-public
6. kube-system
7. platform
8. services
9. vision
Enter a number> 2
Targeted namespace default

34 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Configuring kubectl ...
Property "clusters.icp1" unset.
Property "users.icp1-user" unset.
Property "contexts.icp1-context" unset.
Cluster "icp1" set.
User "icp1-user" set.
Context "icp1-context" created.
Switched to context "icp1-context".
OK

Configuring helm: /root/.helm
OK
#

Now the kubectl commands can be used to similar to the way they are used in the standalone
environment.

Checking Kubernetes services status
The Kubernetes infrastructure is used to run the PowerAI Vision application. The kubectl command can
be used to check the status of these underlying services, using the --namespace kube-system option.
v “Using kubectl get pods to check kube-system”
v “Using kubectl describe pods to check kube-system”

Using kubectl get pods to check kube-system

The kubectl command is used to show the detailed status of the Kubernetes pods deployed to run the
PowerAI Vision application.

Example output

/opt/powerai-vision/bin/kubectl.sh get pods --namespace kube-system
NAME READY STATUS RESTARTS AGE
coredns-76f484447b-9sqwz 1/1 Running 0 3d4h
nginx-ingress-lb-ppc64le-hmtg5 1/1 Running 0 3d4h
nvidia-device-plugin-daemonset-wdlkl 1/1 Running 0 3d4h
tiller-deploy-7f65888dc8-kcglg 1/1 Running 0 3d4h

Interpreting the output

v When the Kubernetes system is running correctly, each of the pods should have:
– In the READY column all pods should be counted - for example, “1/1” or “3/3”.
– A value of “Running” in the STATUS column.

v A STATUS value other than “Running” indicates an issue with the Kubernetes infrastructure.
v A non-0, and growing, value in the RESTARTS column indicates an issue with that Kubernetes pod.

Using kubectl describe pods to check kube-system

The kubectl describe pods command provides detailed information about each of the pods that provide
Kubernetes infrastructure. If the output from a specific pod is desired, run the command kubectl
describe pod pod_name --namespace kube-system.

Example output

The output from the command is verbose, so sample output from only one pod is shown:

Checking the application and environment 35

/opt/powerai-vision/bin/kubectl.sh describe pods --namespace kube-system
Name: coredns-76f484447b-9sqwz
Namespace: kube-system
Node: 127.0.0.1/127.0.0.1
Start Time: Tue, 12 Mar 2019 07:44:34 -0500
Labels: k8s-app=kube-dns

pod-template-hash=76f484447b
Annotations: <none>
Status: Running
IP: 172.17.0.2
Controlled By: ReplicaSet/coredns-76f484447b
Containers:

coredns:
Container ID: docker://e94399e73b84c4fe55f54807cfbfdcacdafcab27fa2f746421bfd5ba9443e175
Image: coredns/coredns:1.2.6
Image ID: docker-pullable://coredns/coredns@sha256:81936728011c0df9404cb70b95c17bbc8af922ec9a70d0561a5d01fefa6ffa51
Ports: 53/UDP, 53/TCP, 9153/TCP
Host Ports: 0/UDP, 0/TCP, 0/TCP
Args: -conf /etc/coredns/Corefile
State: Running

Started: Tue, 12 Mar 2019 07:44:44 -0500
Ready: True
Restart Count: 0
Limits:

memory: 170Mi
Requests:

cpu: 100m
memory: 70Mi

Liveness: http-get http://:8080/health delay=60s timeout=5s period=10s #success=1 #failure=5
Environment: <none>
Mounts:

/etc/coredns from config-volume (ro) /var/run/secrets/kubernetes.io/serviceaccount from default-token-wgpqf (ro)
Conditions:

Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True

Volumes:
config-volume:

Type: ConfigMap (a volume populated by a ConfigMap)
Name: coredns
Optional: false

default-token-wgpqf:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-wgpqf
Optional: false

QoS Class: Burstable
Node-Selectors: beta.kubernetes.io/os=linux
Tolerations: CriticalAddonsOnly

node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300sE

Events: <none>

Interpreting the output

Significant fields providing status of the Kubernetes pods include:
v The Status field should be “Running” - any other status will indicate issues with the environment.
v In the Conditions section, the Ready field should indicate “True”. Any other value indicates that there

are issues with the environment.
v If there are issues with any pods, the Events section of the pod should have information about issues

the pod encountered.

36 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Checking Kubernetes node status
Use these commands to check the status of the nodes in the environment.
v “kubectl.sh get pods”
v “kubectl describe nodes command”
v “kubectl describe pods command” on page 39

kubectl.sh get pods

The kubectl command is used to show the detailed status of the Kubernetes pods deployed to run the
PowerAI Vision application.

Example output

$ /opt/powerai-vision/bin/kubectl.sh get pods
NAME READY STATUS RESTARTS AGE
powerai-vision-cod-infer-33f53f4e-b6d4-4476-bb19-c16c0e4c0sbtv6 1/1 Running 0 3d1h
powerai-vision-cod-infer-b4d1e503-2f43-4652-9679-650b3ae1b4nkhp 1/1 Running 0 34h
powerai-vision-dnn-infer-f5d2182a-2aae-496c-9688-3d1e7e3977pxr9 1/1 Running 0 3d1h
powerai-vision-fpga-device-plugin-bg69p 1/1 Running 0 3d4h
powerai-vision-keycloak-7df657794b-6v4pb 1/1 Running 0 3d4h
powerai-vision-mongodb-6cdc4b654b-c7g99 1/1 Running 0 3d4h
powerai-vision-portal-7fb5d5d66-6tk45 1/1 Running 0 3d4h
powerai-vision-postgres-54d6dbdcf4-zp27c 1/1 Running 0 3d4h
powerai-vision-taskanaly-54bf4f658f-b2hzw 1/1 Running 0 3d4h
powerai-vision-ui-85494f77f7-9wg68 1/1 Running 0 3d4h
powerai-vision-video-nginx-84f4dd84f6-k4tf2 1/1 Running 0 3d4h
powerai-vision-video-portal-59678d77fb-f4qxv 1/1 Running 0 3d4h
powerai-vision-video-rabmq-bb8f588c6-k9spc 1/1 Running 0 3d4h
powerai-vision-video-redis-5dcf7f4b74-q6v86 1/1 Running 0 3d4h
powerai-vision-video-test-nginx-7fb6ff6dd9-b7vzl 1/1 Running 0 3d4h
powerai-vision-video-test-portal-5988b6d66-vpvvk 1/1 Running 0 3d4h
powerai-vision-video-test-rabmq-7c55648476-d7l54 1/1 Running 0 3d4h
powerai-vision-video-test-redis-f64c589f8-rkzf7 1/1 Running 0 3d4h

Interpreting the output

v When the application is running correctly, each of the pods should have:
– A value of 1/1 in the READY column
– A value of Running in the STATUS column

v In the above example output, pods with infer in the name are created when a model is deployed.
These will only appear if there are models deployed in the instance of the application running on the
system.

v A STATUS value other than Running indicates an issue with the pod.
v A non-0 and increasing value in the RESTARTS column indicates an issue with that pod.

If there are indications of issues with pods, see “Troubleshooting known issues - PowerAI Vision
standard install” on page 111.

kubectl describe nodes command

The kubectl describe nodes command provides status information regarding the Kubernetes
environment used to run the PowerAI Vision application.

Example output

Checking the application and environment 37

/opt/powerai-vision/bin/kubectl.sh describe nodes
Name: 127.0.0.1
Roles: <none>
Labels: beta.kubernetes.io/arch=ppc64le

beta.kubernetes.io/os=linux
kubernetes.io/hostname=127.0.0.1

Annotations: node.alpha.kubernetes.io/ttl: 0
volumes.kubernetes.io/controller-managed-attach-detach: true

CreationTimestamp: Tue, 12 Mar 2019 07:44:29 -0500
Taints: <none>
Unschedulable: false
Conditions:

Type Status LastHeartbeatTime LastTransitionTime Reason Message
---- ------ ----------------- ------------------ ------ -------
MemoryPressure False Fri, 15 Mar 2019 12:08:05 -0500 Tue, 12 Mar 2019 07:44:28 -0500 KubeletHasSufficientMemory kubelet has sufficient memory available
DiskPressure False Fri, 15 Mar 2019 12:08:05 -0500 Tue, 12 Mar 2019 07:44:28 -0500 KubeletHasNoDiskPressure kubelet has no disk pressure
PIDPressure False Fri, 15 Mar 2019 12:08:05 -0500 Tue, 12 Mar 2019 07:44:28 -0500 KubeletHasSufficientPID kubelet has sufficient PID available
Ready True Fri, 15 Mar 2019 12:08:05 -0500 Tue, 12 Mar 2019 07:44:29 -0500 KubeletReady kubelet is posting ready status

Addresses:
InternalIP: 127.0.0.1
Hostname: 127.0.0.1

Capacity:
cpu: 160
ephemeral-storage: 922396572Ki
hugepages-16Gi: 0
hugepages-16Mi: 0
memory: 133784000Ki
nvidia.com/gpu: 4
pods: 500

Allocatable:
cpu: 160
ephemeral-storage: 850080679348
hugepages-16Gi: 0
hugepages-16Mi: 0
memory: 133681600Ki
nvidia.com/gpu: 4
pods: 500

System Info:
Machine ID: 3d6ff2f75c7d3ae927580249a28e7e05
System UUID: 2101CAA
Boot ID: a4952737-d779-43d8-ae75-8432ab041c00
Kernel Version: 4.15.0-36-generic
OS Image: Debian GNU/Linux 9 (stretch)
Operating System: linux
Architecture: ppc64le
Container Runtime Version: docker://18.6.1
Kubelet Version: v1.13.0
Kube-Proxy Version: v1.13.0

Non-terminated Pods: (22 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits AGE
--------- ---- ------------ ---------- --------------- ------------- ---
default powerai-vision-cod-infer-33f53f4e-b6d4-4476-bb19-c16c0e4c0sbtv6 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d1h
default powerai-vision-cod-infer-b4d1e503-2f43-4652-9679-650b3ae1b4nkhp 0 (0%) 0 (0%) 0 (0%) 0 (0%) 34h
default powerai-vision-dnn-infer-f5d2182a-2aae-496c-9688-3d1e7e3977pxr9 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d1h
default powerai-vision-fpga-device-plugin-bg69p 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-keycloak-7df657794b-6v4pb 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-mongodb-6cdc4b654b-c7g99 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-portal-7fb5d5d66-6tk45 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-postgres-54d6dbdcf4-zp27c 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-taskanaly-54bf4f658f-b2hzw 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-ui-85494f77f7-9wg68 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-nginx-84f4dd84f6-k4tf2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-portal-59678d77fb-f4qxv 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-rabmq-bb8f588c6-k9spc 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-redis-5dcf7f4b74-q6v86 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-test-nginx-7fb6ff6dd9-b7vzl 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-test-portal-5988b6d66-vpvvk 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-test-rabmq-7c55648476-d7l54 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
default powerai-vision-video-test-redis-f64c589f8-rkzf7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
kube-system coredns-76f484447b-9sqwz 100m (0%) 0 (0%) 70Mi (0%) 170Mi (0%) 3d4h
kube-system nginx-ingress-lb-ppc64le-hmtg5 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
kube-system nvidia-device-plugin-daemonset-wdlkl 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h
kube-system tiller-deploy-7f65888dc8-kcglg 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3d4h

Allocated resources:

38 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits
-------- -------- ------
cpu 100m (0%) 0 (0%)
memory 70Mi (0%) 170Mi (0%)
ephemeral-storage 0 (0%) 0 (0%)
nvidia.com/gpu 3 3

Events: <none>

Interpreting the output

v Most of the information is informational regarding the system resources (CPUs, GPUs, memory) and
version information (OS, Docker, Kubernetes).

v The Conditions section can indicate whether there are system resource issues that will affect the
running of the application. For example, if any of the OutOfDisk, MemoryPressure, or DiskPressure
conditions are True, there are insufficient system resources to run PowerAI Vision. For example, the
following Conditions section shows a system that does not have sufficient disk space available,
indicated by DiskPressure status of True:

Conditions:
Type Status LastHeartbeatTime LastTransitionTime Reason Message
---- ------ ----------------- ------------------ ------ -------
OutOfDisk False [...] [...] KubeletHasSufficientDisk kubelet has sufficient disk space available
MemoryPressure False [...] [...] KubeletHasSufficientMemory kubelet has sufficient memory available
DiskPressure True [...] [...] KubeletHasDiskPressure kubelet has disk pressure
Ready True [...] [...] KubeletReady kubelet is posting ready status

v The Events section will also have messages that can indicate if there are issues with the environment.
For example, the following events indicate issues with disk space that have led to Kubernetes
attempting to reclaim resources (“eviction”) which can affect the availability of Kubernetes applications:

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal NodeHasDiskPressure 5m kubelet, 127.0.0.1 Node 127.0.0.1 status is now: NodeHasDiskPressure
Warning EvictionThresholdMet 3s (x23 over 5m) kubelet, 127.0.0.1 Attempting to reclaim nodefs

kubectl describe pods command

The kubectl.sh describe pods command provides detailed information about each of the pods used by
the PowerAI Vision application. If the output from a specific pod is desired, the command kubectl.sh
describe pod podname. To determine the values for podname look at the output from kubectl.sh get
pods.

Example output

The output from the command is verbose, so sample output from only one pod is shown:

Checking the application and environment 39

/opt/powerai-vision/bin/kubectl.sh describe pods
...
Name: powerai-vision-ui-85494f77f7-9wg68
Namespace: default
Node: 127.0.0.1/127.0.0.1
Start Time: Tue, 12 Mar 2019 07:45:05 -0500
Labels: app=powerai-vision

chart=ibm-powerai-vision-prod-1.3.0
component=powerai-vision-ui
heritage=Tiller
pod-template-hash=85494f77f7
release=vision
run=powerai-vision-ui-deployment-pod

Annotations: checksum/config: 94cf7f105d3b90aa74290ec94b53065f919b35c0d3048d399ebac408cf035679
productID: 5737-H10
productName: IBM PowerAI Vision
productVersion: 1.1.3.0

Status: Running
IP: 172.17.0.9
Controlled By: ReplicaSet/powerai-vision-ui-85494f77f7
Containers:

powerai-vision-ui:
Container ID: docker://67dd58b776000c7441d3bd54cc3a20a1143299c11b401306a01ef0c98bfbd396
Image: powerai-vision-ui:1.1.3.0
Image ID: docker://sha256:c20d081782819000963c24ecb1019dbe4209f581904420bb3a8c77e775c0c614
Port: 80/TCP
Host Port: 0/TCP
State: Running

Started: Tue, 12 Mar 2019 07:45:50 -0500
Ready: True
Restart Count: 0
Liveness: http-get http://:http/powerai-vision/index.html delay=240s timeout=5s period=10s #success=1 #failure=3
Readiness: http-get http://:http/powerai-vision/index.html delay=5s timeout=1s period=10s #success=1 #failure=3
Environment:

CONTEXT_ROOT: <set to the key ’CONTEXT_ROOT’ of config map ’powerai-vision-config’> Optional: false
DLAAS_API_SERVER: <set to the key ’DLAAS_API_SERVER’ of config map ’powerai-vision-config’> Optional: false
SERVER_HOST_VIDEO_TEST: <set to the key ’SERVER_HOST_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false
SERVICE_PORT_VIDEO_TEST: <set to the key ’SERVICE_PORT_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false
WEBROOT_VIDEO_TEST: <set to the key ’WEBROOT_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false

Mounts:
/opt/powerai-vision/data from data-mount (rw)
/var/run/secrets/kubernetes.io/serviceaccount from default-token-grhcc (ro)

Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True

Volumes:
data-mount:

Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: powerai-vision-data-pvc
ReadOnly: false

default-token-grhcc:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-grhcc
Optional: false

QoS Class: BestEffort
Node-Selectors: beta.kubernetes.io/arch=ppc64le
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s
Events: <none>

Interpreting the output

Significant fields providing status of the application pods include:
v Information about the product name and version are given in productName and productVersion.
v The Status field should be Running. Any other status indicates problems with the application pod.

40 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

v If there are issues with a pod, the Events section of the pod should have information about problems
encountered.

Checking Kubernetes storage status
The PowerAI Vision application requires disk storage for activities including data set storage. The disk
space requirements are described using Kubernetes Persistent Volume configuration. The kubectl
command can be used to examine the pv (PersistentVolume) and pvc (PersistentVolumeClaims) resources.

Note: The storage requirements described in the PersistentVolume and PersistentVolumeClaims are not
enforced in the standalone deployment. Therefore, the requested space might not be available in the
underlying storage of the system. See “Disk space requirements” on page 14 for information about
product storage requirements.
v “Using kubectl get pv and pvc commands”
v “Using the kubectl describe pv command”
v “Using the kubectl describe pvc command” on page 42

Using kubectl get pv and pvc commands

The kubectl get pv and kubectl get pvc commands can be used to see what PersistentVolume and
PersistentVolumeClaim have been defined for the application.

Example output

/opt/powerai-vision/bin/kubectl.sh get pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
powerai-vision-data 40Gi RWX Retain Bound default/powerai-vision-data-pvc 48d
/opt/powerai-vision/bin/kubectl.sh get pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
powerai-vision-data-pvc Bound powerai-vision-data 40Gi RWX 48d

Interpreting the output

The above output shows information about the Persistent Volume and Persistent Volume Claim for
PowerAI Vision. The application currently has a capacity claim of 40G and it is successfully “Bound”. If
the STATUS is not “Bound”, the application does not have access to the necessary storage.

Using the kubectl describe pv command

The kubectl describe pv command is used to see detailed information about the Persistent Volume used
by the application.

Example output

Checking the application and environment 41

/opt/powerai-vision/bin/kubectl.sh describe pv
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
powerai-vision-data 40Gi RWX Retain Bound default/powerai-vision-data-pvc 48d
[root@dlf01 ~]# /opt/powerai-vision/bin/kubectl.sh describe pv
Name: powerai-vision-data
Labels: assign-to=powerai-vision-data

type=local
Annotations: pv.kubernetes.io/bound-by-controller=yes
StorageClass:
Status: Bound
Claim: default/powerai-vision-data-pvc
Reclaim Policy: Retain
Access Modes: RWX
Capacity: 40Gi
Message:
Source:

Type: HostPath (bare host directory volume)
Path: /opt/powerai-vision/volume/

Events: <none>

Interpreting the output

The above output shows more details about the Persistent Volume used by the application. The
Sourcesection has the critical configuration values for Type and Path. The Events section will have
information about Error events if there were issues with the Persistent Volume.

Using the kubectl describe pvc command

The kubectl describe pvc command is used to see detailed information about the Persistent Volume
Claim for the application.

Example output

[root@dlf01 ~]# /opt/powerai-vision/bin/kubectl.sh describe pvc

Name: powerai-vision-data-pvc
Namespace: default
StorageClass:
Status: Bound
Volume: powerai-vision-data
Labels: app=powerai-vision

chart=ibm-powerai-vision-prod-1.1.0
heritage=Tiller
release=vision

Annotations: pv.kubernetes.io/bind-completed=yes
pv.kubernetes.io/bound-by-controller=yes

Capacity: 40Gi
Access Modes: RWX
Events: <none>

Interpreting the output

The above output shows more details about the Persistent Volume Claim used by the application. The
Volume section references the underlying Persistent Volume, and the Status should be “Bound” if it has
been successfully allocated to the application. The Events section will show if there were issues with the
Persistent Volume Claim.

42 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Checking application deployment
PowerAI Vision processes require a Kubernetes environment. Use these commands to verify that the
Kubernetes environment was deployed correctly and that all nodes are configured appropriately.
v “helm.sh”
v “kubectl describe deployment” on page 45

helm.sh

The helm.sh command shows the status of the full Kubernetes environment of the PowerAI Vision
application.

Example output

Checking the application and environment 43

/opt/powerai-vision/bin/helm.sh status vision
LAST DEPLOYED: Tue Mar 12 07:44:55 2019
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/Ingress
NAME HOSTS ADDRESS PORTS AGE
powerai-vision-ing * 80 3d4h

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE
powerai-vision-fpga-device-plugin-bg69p 1/1 Running 0 3d4h
powerai-vision-keycloak-7df657794b-6v4pb 1/1 Running 0 3d4h
powerai-vision-mongodb-6cdc4b654b-c7g99 1/1 Running 0 3d4h
powerai-vision-portal-7fb5d5d66-6tk45 1/1 Running 0 3d4h
powerai-vision-postgres-54d6dbdcf4-zp27c 1/1 Running 0 3d4h
powerai-vision-taskanaly-54bf4f658f-b2hzw 1/1 Running 0 3d4h
powerai-vision-ui-85494f77f7-9wg68 1/1 Running 0 3d4h
powerai-vision-video-nginx-84f4dd84f6-k4tf2 1/1 Running 0 3d4h
powerai-vision-video-portal-59678d77fb-f4qxv 1/1 Running 0 3d4h
powerai-vision-video-rabmq-bb8f588c6-k9spc 1/1 Running 0 3d4h
powerai-vision-video-redis-5dcf7f4b74-q6v86 1/1 Running 0 3d4h
powerai-vision-video-test-nginx-7fb6ff6dd9-b7vzl 1/1 Running 0 3d4h
powerai-vision-video-test-portal-5988b6d66-vpvvk 1/1 Running 0 3d4h
powerai-vision-video-test-rabmq-7c55648476-d7l54 1/1 Running 0 3d4h
powerai-vision-video-test-redis-f64c589f8-rkzf7 1/1 Running 0 3d4h

==> v1/Secret
NAME TYPE DATA AGE
powerai-vision-secrets Opaque 6 3d4h

==> v1/ConfigMap
NAME DATA AGE
powerai-vision-config 52 3d4h

==> v1/PersistentVolumeClaim
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
powerai-vision-data-pvc Bound powerai-vision-data 40Gi RWX 3d4h

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
powerai-vision-keycloak ClusterIP 10.10.0.149 <none> 8080/TCP,8443/TCP 3d4h
powerai-vision-mongodb ClusterIP 10.10.0.119 <none> 27017/TCP 3d4h
powerai-vision-portal ClusterIP 10.10.0.94 <none> 9080/TCP 3d4h
powerai-vision-postgres ClusterIP 10.10.0.114 <none> 5432/TCP 3d4h
powerai-vision-taskanaly ClusterIP 10.10.0.165 <none> 5000/TCP 3d4h
powerai-vision-ui ClusterIP 10.10.0.30 <none> 80/TCP 3d4h
powerai-vision-video-nginx ClusterIP 10.10.0.154 <none> 8081/TCP 3d4h
powerai-vision-video-portal ClusterIP 10.10.0.27 <none> 8080/TCP,8081/TCP 3d4h
powerai-vision-video-rabmq ClusterIP 10.10.0.87 <none> 5672/TCP 3d4h
powerai-vision-video-redis ClusterIP 10.10.0.66 <none> 6379/TCP 3d4h
powerai-vision-video-test-nginx ClusterIP 10.10.0.138 <none> 8083/TCP 3d4h
powerai-vision-video-test-portal ClusterIP 10.10.0.89 <none> 8080/TCP,8081/TCP 3d4h
powerai-vision-video-test-rabmq ClusterIP 10.10.0.11 <none> 5672/TCP 3d4h
powerai-vision-video-test-redis ClusterIP 10.10.0.232 <none> 6379/TCP 3d4h

==> v1beta1/DaemonSet
NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE
powerai-vision-fpga-device-plugin 1 1 1 1 1 <none> 3d4h

==> v1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-keycloak 1 1 1 1 3d4h
powerai-vision-mongodb 1 1 1 1 3d4h
powerai-vision-portal 1 1 1 1 3d4h
powerai-vision-postgres 1 1 1 1 3d4h
powerai-vision-taskanaly 1 1 1 1 3d4h

44 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

powerai-vision-ui 1 1 1 1 3d4h
powerai-vision-video-nginx 1 1 1 1 3d4h
powerai-vision-video-portal 1 1 1 1 3d4h
powerai-vision-video-rabmq 1 1 1 1 3d4h
powerai-vision-video-redis 1 1 1 1 3d4h
powerai-vision-video-test-nginx 1 1 1 1 3d4h
powerai-vision-video-test-portal 1 1 1 1 3d4h
powerai-vision-video-test-rabmq 1 1 1 1 3d4h
powerai-vision-video-test-redis 1 1 1 1 3d4h

NOTES:

Find the PowerAI Vision UI URL by running the following commands:

export NODE_IP=$(kubectl get ing powerai-vision-ing --namespace default -o jsonpath="{.status.loadBalancer.ingress[0].ip}")
echo https://${NODE_IP}/powerai-vision/

Important fields in the output

STATUS
The value for STATUS should be DEPLOYED after a successful installation.

RESOURCES
The status of individual Kubernetes pods is displayed in this section. The CURRENT and AVAILABLE
values for each pod should be equal to or greater than the DESIRED value.

RESOURCES:
==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
...
powerai-vision-portal 1 1 1 1 14d
...

kubectl describe deployment

The kubectl describe deployment command provides verbose status information about each of the
deployed nodes in the Kubernetes environment that is being used to run PowerAI Vision.

Example output

The following shows the output from one of the nodes. The full output for all nodes is much longer and
has similar entries for each node.

Checking the application and environment 45

/opt/powerai-vision/bin/kubectl.sh describe deployment
...
Name: powerai-vision-ui
Namespace: default
CreationTimestamp: Tue, 12 Mar 2019 07:45:02 -0500
Labels: app=powerai-vision

chart=ibm-powerai-vision-prod-1.3.0
heritage=Tiller
release=vision
run=powerai-vision-ui-deployment

Annotations: deployment.kubernetes.io/revision: 1
Selector: run=powerai-vision-ui-deployment-pod
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable
StrategyType: RollingUpdate
MinReadySeconds: 0
RollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:

Labels: app=powerai-vision
chart=ibm-powerai-vision-prod-1.3.0
component=powerai-vision-ui
heritage=Tiller
release=vision
run=powerai-vision-ui-deployment-pod

Annotations: checksum/config: 94cf7f105d3b90aa74290ec94b53065f919b35c0d3048d399ebac408cf035679
productID: 5737-H10
productName: IBM PowerAI Vision
productVersion: 1.1.3.0

Containers:
powerai-vision-ui:
Image: powerai-vision-ui:1.1.3.0
Port: 80/TCP
Host Port: 0/TCP
Liveness: http-get http://:http/powerai-vision/index.html delay=240s timeout=5s period=10s #success=1 #failure=3
Readiness: http-get http://:http/powerai-vision/index.html delay=5s timeout=1s period=10s #success=1 #failure=3
Environment:

CONTEXT_ROOT: <set to the key ’CONTEXT_ROOT’ of config map ’powerai-vision-config’> Optional: false
DLAAS_API_SERVER: <set to the key ’DLAAS_API_SERVER’ of config map ’powerai-vision-config’> Optional: false
SERVER_HOST_VIDEO_TEST: <set to the key ’SERVER_HOST_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false
SERVICE_PORT_VIDEO_TEST: <set to the key ’SERVICE_PORT_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false
WEBROOT_VIDEO_TEST: <set to the key ’WEBROOT_VIDEO_TEST’ of config map ’powerai-vision-config’> Optional: false

Mounts:
/opt/powerai-vision/data from data-mount (rw)

Volumes:
data-mount:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: powerai-vision-data-pvc
ReadOnly: false

Conditions:
Type Status Reason
---- ------ ------
Available True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable

OldReplicaSets: <none>
NewReplicaSet: powerai-vision-ui-85494f77f7 (1/1 replicas created)
Events: <none>
...

Interpreting the output

v The Replicas line shows information regarding how many images are desired and available (similar to
the output from kubectl get pods):
Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable

The “available” value should be equal to the “desired” value.
v The productVersion value indicates the level of PowerAI Vision installed:

productVersion=1.1.1.0

v The Image value provides information about the Docker container:
Image: powerai-vision-ui:1.1.1.0

46 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

v The Conditions section has important information about the current status of the image, and any
reasons if the status is “failure”.

Checking system GPU status
In PowerAI Vision, GPUs are used to train and deploy models. Use these commands to verify that GPUs
are set up and available.

nvidia-smi

The nvidia-smi command is a NVIDIA utility, installed with the CUDA toolkit. For details, see
“Prerequisites for installing PowerAI Vision” on page 19. With nvidia-smi, you can view the status of the
GPUs on the system.

Example output

nvidia-smi
Fri Mar 15 12:23:50 2019
+---+
| NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000002:01:00.0 Off | 0 |
| N/A 50C P0 109W / 300W | 2618MiB / 16280MiB | 43% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000003:01:00.0 Off | 0 |
| N/A 34C P0 34W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P100-SXM2... On | 0000000A:01:00.0 Off | 0 |
| N/A 48C P0 44W / 300W | 5007MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P100-SXM2... On | 0000000B:01:00.0 Off | 0 |
| N/A 36C P0 33W / 300W | 0MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 114476 C /opt/miniconda2/bin/python 2608MiB |
| 2 114497 C /opt/miniconda2/bin/python 958MiB |
| 2 114519 C /opt/miniconda2/bin/python 958MiB |
| 2 116655 C /opt/miniconda2/bin/python 2121MiB |
| 2 116656 C /opt/miniconda2/bin/python 958MiB |
+---+

Interpreting the output

The above output shows the following:
v The system has 4 (0-3) Tesla P100 GPUs.
v In the last portion of the output, it shows that GPU 0 has a process deployed and running. This can

indicate a PowerAI Vision training task or a deployed model. Any GPUs with running jobs are not
available for training jobs or deployment of trained models from the user interface. The output also
shows multiple processes running on GPU 2, which can indicate that multiple models deployed for
inferencing are sharing that GPU resource.

v The output should correctly display the memory configuration of the GPUs. For example, “Unknown
error” indicates an issue with the driver setup or configuration. See “GPUs are not available for
training or inference” on page 115 for more information.

Checking the application and environment 47

48 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Logging in to PowerAI Vision

Follow these steps to log in to PowerAI Vision.

Note: PowerAI Vision is supported on these browsers:
v Google Chrome Version 60, or later
v Firefox Quantum 59.0, or later
1. Enter the appropriate PowerAI Vision URL in a supported browser:

PowerAI Vision stand-alone URL
https://hostname/powerai-vision/, where hostname is the system on which you installed
PowerAI Vision.

PowerAI Vision with IBM Cloud Private URL
https://proxyhost/powerai-vision-RELEASE/, where proxyhost is the host name of your IBM
Cloud Private proxy server, and RELEASE is the name you specified in the Release name field
when you deployed the Helm chart.

2. Enter your user name and password. A default user name (admin) and password (passw0rd) was
created at install time. For instructions to change these values, see “Managing users” on page 95.

Related concepts:
“Managing users” on page 95
There are two kinds of users in PowerAI Vision: administrators, and everyone else. The way you work
with users and passwords differs, depending on how PowerAI Vision is installed.

© Copyright IBM Corp. 2018 49

50 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Working with the user interface

The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the
action bar, the data area, and the notification center.

Interface areas

The user interface is made up of several different areas:

1: The navigation bar
The navigation bar lets you choose a work space, access the notification area, or work with your
profile.

2: The header bar
The header bar on the Training, Models, Model details, and Deployed Models pages shows GPU
usage details in these categories:

Training
GPUs currently used for training jobs by PowerAI Vision.

Deployed Models
GPUs currently used for deployed models by PowerAI Vision.

Note: If the output shows "Unknown", then GPUs are in use, but not for PowerAI Vision training
or deployment. This either indicates an issue with a GPU in use by a training or deploy job that
failed unexpectedly, or there are other applications on the system using GPUs. This could lead to
unexpected resource contention and application issues.

3: The action bar
This is where you find the actions that you can take on images, videos, data sets, and models in
the current data area. The available actions differ depending on what type of object you are
working with.

4: The side bar
Data sets and models have a side bar with filtering options. Filtering helps you specify which
objects to include in the data area.

Navigating: If the side bar is long, for example, if you have a data set with a lot of different
types of objects, you can scroll through the side bar content. To scroll, hover over the appropriate

Figure 7. PowerAI Vision user interface

© Copyright IBM Corp. 2018 51

content and use your mouse roller or keyboard arrow keys. If the mouse pointer is right over the
categories, for example, scrolling moves you through that list. If the mouse pointer is further to
the right, on the edge of the side bar, scrolling moves you through all of the content on the side
bar.

5: The data area
This is where you find the objects that you can act on. It lists the objects of the selected type, or
displays the data included in the data set.

Filtering
With large data sets, you might need to filter the files that are shown in the data area. By
default, your whole data set is shown.

Filter by Images / Videos
When you deselect a file type, those files are no longer shown in the data area.
Therefore, if you only have Images selected, only images are shown in the data
area.

Categories / objects
When you select categories and / or objects, all files of the specified type that
belong to any of the selected categories, or contain the selected objects, are
shown.

For example, assume you have a data set with two categories: Cats and Dogs.
Also assume that you tagged these types of objects: Face, Collar, and Tail. Then
if you select Images, the category Dogs, and the object Collar, you will see all
images that are dogs or contain a collar. This will include images of cats if they
have a collar as well as images of dogs with no collar.

Using filtering and “Select all” with video data
When you capture frames from a video, these frames always maintain a child /
parent relationship with the original video. That has some selection and filtering
implications.
v When using the filter on the side bar, if any video frame matches the filter

criteria, both the frame and its parent video are selected and are shown in the
data area.

v If you click the “Select” box in the action bar, everything in the data area is
selected. Therefore, if there is a video shown in the data area, it, and all of its
child frames, are selected. Any action performed in this situation applies to all
selected images, the video, and all of its child frames.

Example

A user has captured 50 frames from a video file Cars Video. Fourteen frames of
the 50 have no labels.
1. The user selects Unlabeled in the Objects filter in the sidebar. The 14 frames

with no labels and their parent video, Cars Video, are shown in the data area.
2. The user clicks Select in the action bar. The frames and the video are all

selected.
3. The user clicks Delete, intending to delete the unlabeled frames. However,

because the video was selected, it, and the 36 labeled frames, are also deleted.

To delete only the unlabeled frames, the user should click Select in the action bar
to quickly select all 14 frames, then deselect the video file before clicking Delete.

Deleting items
In general, to delete items, you select and delete the files. However, because video frames
always maintain a child / parent relationship with the original video, when you select a
video for deletion, the video and all of the frames are deleted. You can delete frames and
leave the video, but you cannot delete the video and leave the frames.

52 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

The notification area
Click the bell icon in the navigation bar to access the notification area. This allows you to view
and work with messages. Click the arrow to return to your previous view.

Related concepts:
“Training and working with models” on page 55
Use these processes to create, deploy, and refine models.
“Scenario: Detecting objects in a video” on page 86
In this fictional scenario, you want to create a deep learning model to monitor traffic on a busy road. You
have a video that displays the traffic during the day. From this video, you want to know how many cars
are on the busy road every day, and what are the peak times that have the most cars on the road.
Related tasks:
“Training a model” on page 62
After the data set has all of the object labels added, you can train your deep learning model. Trained
models can then be deployed for use.
“Creating and working with data sets” on page 55
Before you can work with videos or images, you need to create a data set. A data set is a group of
images, videos, or both that you will use to train a deployable model.
“Deploying a trained model” on page 73
Deploy a trained model to get it ready to use within PowerAI Vision or a different program, such as IBM
PowerAI. Deploying a model creates a unique API endpoint based on that model for inference
operations.
“Scenario: Classifying images” on page 91
The goal of this example is to train a model to classify images of birds into groups based on their
physiological similarities. Once the model is trained with a known dataset, users can upload new data
sets to auto classify the birds into their respective categories. We will prepare the data, create a data set,
train the model, and test the model.

Figure 8. Notification area

Working with the user interface 53

54 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Training and working with models

Use these processes to create, deploy, and refine models.

You can only see and work with objects (data sets, files, trained models, and deployed models) that you
own. An object is owned by the user who created it.

Creating and working with data sets
Before you can work with videos or images, you need to create a data set. A data set is a group of
images, videos, or both that you will use to train a deployable model.

To create a data set and add content to it, follow these steps:
1. Log in to PowerAI Vision.
2. Click Data Sets in the navigation bar to open the Data Sets page. There are several ways to create a

new data set:
v To create an empty data set, click Create new data set.
v If you have a previously exported data set, click Import .zip file.
v If you want to copy an existing data set, select the data set and click Duplicate.

Notes:

v PowerAI Vision has limited support for Pascal VOC annotations. Annotations for multiple files
residing in a common XML file are not supported. In other words, each annotation XML file can
only contain annotations for a single image, identified by the filename attribute.
If you have a single XML annotation file containing annotations for multiple images in the data set
to be imported, the annotations need to be split out into separate XML files before PowerAI Vision
can import the annotations successfully.

v PowerAI Vision supports importing COCO data sets with the following limitations:
Only “object detection” annotations are supported. You can review the annotation format on the
COCO data format page. When you import images with COCO annotations, PowerAI Vision only
keeps the information it will use, as follows:
– PowerAI Vision extracts the information from the images, categories, and annotations lists and

ignores everything else.
– Unused annotations are not saved. For example, if there is annotation information for clock, but

no image is tagged with a clock, then the clock object (called category in COCO) is not saved.
– For COCO annotations that use the RLE format, the RLE is not saved. Only the bounding box is

used.

Note: Images without tags are saved.
3. Click the data set you just created to open it. Add images and videos by using Import file or by

dragging them to the + area. If you do not follow these considerations, your upload will fail and a
message will be shown on the screen. For details about why the upload failed, click the bell icon at
the top of the page to open the Notifications center.

Upload considerations:

v You can select multiple image or video files, or a single .zip file that contains images and videos,
but you cannot upload a folder that contains images or videos.

v You cannot navigate away from the PowerAI Vision page or refresh until the upload completes.
You can navigate to different pages within PowerAI Vision during the upload.

© Copyright IBM Corp. 2018 55

http://cocodataset.org/#format-data

v There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files.
You can, however upload 24 GB of files, then upload more after the original upload completes.

Working with data sets

After your data set has been created, select it in the Data Sets page to duplicate, rename, delete it, and so
on. To work with the images and videos contained in the data set, click the name of the data set to open
it.

Working with video data and captured frames

In general, to delete items, you select and delete the files. However, because video frames always
maintain a child / parent relationship with the original video, when you select a video for deletion, the
video and all of the frames are deleted. You can delete frames and leave the video, but you cannot delete
the video and leave the frames.

Data set considerations
When preparing a data set for training, consider the following information to ensure the best results.

Note: Unless otherwise noted, mentions of “images” refers to both individual images and captured video
frames.
v “What are the limitations on uploaded files?”
v “How many images are needed?” on page 57
v “Special considerations for object detection models” on page 57

What are the limitations on uploaded files?
v The following image formats are supported:

– JPEG
– PNG

v You can play only the following video types in PowerAI Vision:
– Ogg Vorbis (.ogg)
– VP8 or VP9 (.webm)
– H.264 encoded videos with MP4 format (.mp4)

v The models used by PowerAI Vision have limitations on the size and resolution of images. If the
original data is high resolution, then the user must consider:
– If the images do not need fine detail for classification or object detection, they should be

down-sampled to 1-2 megapixels.
– If the images do require fine detail, they should to be divided into smaller images of 1-2 megapixels

each.
– High resolution images will be scaled to a maximum of 1000 x 600 pixels.
– For image classification, images are scaled to 224 x 224 pixels.
– For object detection with Detectron, all images are scaled to 1333 x 800 pixels.
– For object detection with tiny YOLO V2, all images are scaled to 416 x 416. However, the original

aspect ratio is maintained. That is, the longest edge is scaled to 416 pixels and, if necessary, black
bands are added to the shorter side to make it 416 pixels.

– For object detection with FR-CNN, image segmentation, or video, anything over 1000 x 600 pixels is
down-sampled so that the longest edge will fit.

– There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files.
You can, however upload 24 GB of files, then upload more after the original upload completes.

56 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

v Images with COCO annotations are supported. For details, see “Importing images with COCO
annotations” on page 58.

How many images are needed?

A data set with a variety of representative objects labeled will train a more accurate model. The exact
number of images and objects cannot be specified, but some guidelines recommend as many as 1,000
representative images for each class. However, you might not need a data set this large to train a model
with satisfactory accuracy. The number of images required depends on the kind of training you plan on
doing:

Image classification

v There must be at least two categories.
v Each category must have at least five images.

Object detection
The data set must contain at least five images with an object labeled for each defined object. For
example, if you want to train the data set to recognize cars and you have three images and one
video, you must add the “car” label to each image and at least two frames of the video. Labeling
five cars in one image is not adequate. If this requirement is not met and you train the model, it
will not be trained to recognize that type of object.

Important: Not all of the images in a data set are used for training. Assuming that you did not change
the value for Ratio (an advanced hyperparameter setting) when training your model, 20% of the images
are randomly selected and used for validation instead of training. Because of this, it is important that you
have enough images of every category or object.

For example, consider a data set to be used for training of an object detection model that has 200 images.
With the default configuration for model training, 20% of the images (40 images) will be selected for
testing the model. If there is a label LabelA used to identify an object in the data set, the following
scenarios are possible if the number of images labeled with the object are smaller than the test data set,
for example, if there are only 20 images with objects labeled as LabelA:
v It is possible that all of the images with LabelA are in the "training" data set, and none of the images

are actually used for testing of the model. This will result in unknown accuracy for LabelA, since there
are no tests of the accuracy.

v Similarly, it is possible that all 20 images with LabelA objects are in the test data set but there are no
images used for training. This will result in very low or 0% accuracy for the object because the model
was not actually trained with any images containing the LabelAobjects.

If your data set does not have many images or sufficient variety for training, consider using the
Augmentation feature to increase the data set.

Special considerations for object detection models

Accuracy for object detection models can be more challenging since it includes intersection over union
(IoU), especially for models that use segmentation instead of bounding boxes. IoU is calculated by the
intersection between a ground truth bounding box and a predicted bounding box, divided by the union
of both bounding boxes; where the intersection is the area of overlap, a ground truth bounding box is the
hand drawn box, and the predicted bounding box is the one drawn by PowerAI Vision.

In the case of object detection, the object might have been correctly identified but the overlap of the
boundary generated by the model is not accurate resulting in a poor IoU metric. This metric might be
improved by more precise object labeling to reduce background "noise", by training the model longer, or
both.

Training and working with models 57

Importing images with COCO annotations
Images with Common Objects in Context (COCO) annotations have been labeled outside of PowerAI
Vision. You can import (upload) these images into an existing PowerAI Vision data set, along with the
COCO annotation file, to inter-operate with other collections of information and to ease your labeling
effort.

Only “object detection” annotations are supported. You can review the annotation format on the COCO
data format page. When you import images with COCO annotations, PowerAI Vision only keeps the
information it will use, as follows:
v PowerAI Vision extracts the information from the images, categories, and annotations lists and

ignores everything else.
v Unused annotations are not saved. For example, if there is annotation information for clock, but no

image is tagged with a clock, then the clock object (called category in COCO) is not saved.
v For COCO annotations that use the RLE format, the RLE is not saved. Only the bounding box is used.

Note: Images without tags are saved.

To import images with COCO annotations into PowerAI Vision, follow these steps:
1. If necessary, create a new data set. The data set must exist before importing the COCO annotated

data.
2. Download the images that you want to import.
3. If you downloaded train2017.zip, PowerAI Vision cannot train the entire data set. Therefore, you

must make a new file that contains just the images you want to train. For example, by running this
command:
ls train2017 | grep jpg | head -20000 >/tmp/flist

4. Download the annotations file for your images. For example, annotations_trainval2017.zip contains
the annotations for the train2017 data set. For example, if you downloaded
annotations_trainval2017.zip, extract the annotations/instances_train2017.json file, which is the
COCO annotation file for object detection.
If you are using a .json file from a different source, it cannot be called prop.json.

5. Create a zip file that contains the annotations file and the images.
v There can be only one .json file in the zip file. If more that one .json file is discovered, only the

first one is used.
v The .json file cannot be named props.json because this is used by PowerAI Vision exported data

sets, which use different annotations.
v The images and the annotation file can reside in different directories.

6. Import the zip file into an existing PowerAI Vision data set.

Note: COCO data sets are created for competition and are designed to be challenging to identify objects.
Therefore, do not be surprised if the accuracy numbers achieved when training are relatively low,
especially with the default 4000 iterations. However, these data sets will allow you to experiment with
segmentation training and inference without having to manually label a lot of images

For details about COCO data sets, refer to the COCO web site.

Labeling objects
One of the most important steps is to ensure that you properly label objects by adding tags to your data.

58 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://cocodataset.org/#format-data
http://cocodataset.org/#format-data
http://cocodataset.org/#home

Requirements

Recommendation: Label and class names should be 64 characters or less. Longer label names are
supported but using international characters or very long label names can cause an internal metadata
error, resulting in a training failure.

Image classification

v There must be at least two categories.
v Each category must have at least five images.

Object detection
The data set must contain at least five images with an object labeled for each defined object. For
example, if you want to train the data set to recognize cars and you have three images and one
video, you must add the “car” label to each image and at least two frames of the video. Labeling
five cars in one image is not adequate. If this requirement is not met and you train the model, it
will not be trained to recognize that type of object.

Note: A data set with a variety of representative objects labeled will train a more accurate model. The
exact number of images and objects cannot be specified, but some guidelines recommend as many as
1,000 representative images for each class. However, you might not need a data set this large to train a
model with satisfactory accuracy.

If your data set does not have many images or sufficient variety for training, consider using the
Augmentation feature to increase the data set.
v “Labeling videos”
v “Labeling images” on page 61

Labeling videos
1. Select the video from your data set and select Label Objects.
2. Capture frames by using one of these options:
v Auto capture frames - PowerAI Vision captures a video frame every n seconds, where n is specified

in the Capture Interval (seconds) field.

Note:

– Depending on the length and size of the video and the interval you specified to capture frames,
the process to capture frames can take several minutes.

– When performing multiple auto label operations on the same video, it is possible to get multiple
frames with the same time offset. This situation can occur when the intervals overlap and labels
have been edited on the frames at the overlap points.
For example, labeling at a 10 second interval, editing some of the labels on those frames, and
then labeling again at a 5 second interval has an overlap every 10 seconds. There might be
duplicate images at each of the 10 second intervals with edited labels.

v Manually capture frames - use Capture frame to capture relevant frames.

Note: When you capture frames from a video, these frames always maintain a child / parent
relationship with the original video.

3. If required, manually add new frames to an existing data set. This might happen if Auto capture
frames does not produce enough frames with a specific object type. To manually add new frames,
follow these steps:
a. Play the video and when the frame you want is displayed, click the pause icon.

Tip: You can use the video player's status bar to find a frame you want.
b. Click Capture Frame.

Training and working with models 59

4. Create new object labels for the data set by clicking Add new by the Objects list. To add multiple
object labels, enter one label, click Add, then enter the next until you are done. Label names cannot
contain any special characters other than the underscore (_). For example, characters such as these
are not allowed: -"/ \ | { } () ; :,

Note: If non-ASCII characters are used in the label name, they will not be displayed correctly when
using a video to test the deployed model. See “Testing a model” on page 74.
You can rename objects later. However, after you rename an object, you will no longer be able to
undo actions done before the rename.

5. Label the objects in the frames by following these steps.
a. Select the first frame in the carousel.
b. Select the correct object label.
c. Choose Box or Polygon from the bottom left, depending on the shape you want to draw around

each object. Boxes are faster to label and train, but less accurate. Only Detectron models support
polygons. However, if you use polygons to label your objects, then use this data set to train a
model that does not support polygons, bounding boxes are defined and used. Draw the
appropriate shape around the object.

Tip: The Paste previous button is active if there is at least one frame before the current frame
being edited. Clicking Paste previous copies all the labels from the previous video frame and
paste them into the current frame.

Follow these guidelines when identifying and drawing objects in video frames:
v Do not label part of an object. For example, do not label a car that is only partially in the frame.
v If an image has more than one object, you must label all objects. For example, if you have cars and

motorcycles defined as objects for the data set, and there is an image with both cars and
motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the
accuracy of the model.

v Label each individual object. Do not label groups of objects. For example, if two cars are right next
to each other, you must draw a label around each car.

v Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
v You can draw shapes around objects that touch or overlap. For example, if one object is behind

another object, you can label them both. However, it is recommended that you only label objects if
the majority of the object is visible.

v Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more
accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the
right edge, you might have to click the left arrow key several times to start panning in the other
direction.

v Shapes cannot extend off the edge of the frame.
v After defining a shape, you can copy and paste it elsewhere in the same image or in a different

image by using standard keyboard shortcuts. After pasting the shape, it can be selected and
dragged to the desired location in the image. The shape can also be edited to add or remove points
in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in
the image carousel. From the data set, select all images that will share shapes, then click Label
objects. All images will be listed in the image carousel in the left side of the Label objects window.

v Labeling with polygons

– To delete a point from an outline, ctrl+click (or cmd+click).
– To add a point to an outline, click the translucent white square between any two points on the

outline.

60 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

– To move a point on the outline, click it and drag.

Labeling images

Follow these steps to label images in your data set:
1. Create new object labels for the data set by clicking Add new by the Objects list. To add multiple

object labels, enter one label, click Add, then enter the next until you are done. Label names cannot
contain any special characters other than the underscore (_). For example, characters such as these
are not allowed: -"/ \ | { } () ; :,

2. Open an image. In the right pane, select the object you want to label.
3. Choose Box or Polygon from the bottom left, depending on the shape you want to draw around each

object. Boxes are faster to label and train, but less accurate. Only Detectron models support polygons.
However, if you use polygons to label your objects, then use this data set to train a model that does
not support polygons, bounding boxes are defined and used. Draw the appropriate shape around the
object.
v Do not label part of an object. For example, do not label a car that is only partially in the frame.
v If an image has more than one object, you must label all objects. For example, if you have cars and

motorcycles defined as objects for the data set, and there is an image with both cars and
motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the
accuracy of the model.

v Label each individual object. Do not label groups of objects. For example, if two cars are right next
to each other, you must draw a label around each car.

v Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
v You can draw shapes around objects that touch or overlap. For example, if one object is behind

another object, you can label them both. However, it is recommended that you only label objects if
the majority of the object is visible.

v Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more
accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the
right edge, you might have to click the left arrow key several times to start panning in the other
direction.

v Shapes cannot extend off the edge of the frame.
v After defining a shape, you can copy and paste it elsewhere in the same image or in a different

image by using standard keyboard shortcuts. After pasting the shape, it can be selected and
dragged to the desired location in the image. The shape can also be edited to add or remove points
in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in
the image carousel. From the data set, select all images that will share shapes, then click Label
objects. All images will be listed in the image carousel in the left side of the Label objects window.

v Labeling with polygons

– To delete a point from an outline, ctrl+click (or cmd+click).
– To add a point to an outline, click the translucent white square between any two points on the

outline.
– To move a point on the outline, click it and drag.

Objects panel

Click the settings icon on the right side of the Objects panel to change the labeling settings, such as
whether to show object labels inside shapes, hide all shapes except the one being drawn, change the
shape opacity, and so on.

Training and working with models 61

As you label objects, they are added to the list in the Objects panel on the right. To work with a
labeled object, select it in the Objects panel. You can hide the object outline, rename it, or delete it.
To work with all objects of one type, such as cars, click the three dots to the right of the object title.
These actions apply only to the items identified as this type of object in the current image.

Related tasks:
“Automatically labeling objects” on page 75
After deploying a model for object detection, you can improve its accuracy by using the Auto label
function. This function improves the model's accuracy by quickly adding more data to the data set.

Training a model
After the data set has all of the object labels added, you can train your deep learning model. Trained
models can then be deployed for use.
1. From the Data set page, click Train.
2. In the Train data set window, fill out the values as appropriate, then click Train:

Type of training

Image classification
Choose this if you want to use the model to categorize images as belonging to one of
the types that you defined in the data set.

Note:

v There must be at least two categories.
v Each category must have at least five images.

Object detection
Choose this if you want to use the model to label objects within images.

Note: The data set must contain at least five images with an object labeled for each
defined object. For example, if you want to train the data set to recognize cars and
you have three images and one video, you must add the “car” label to each image
and at least two frames of the video. Labeling five cars in one image is not adequate.
If this requirement is not met and you train the model, it will not be trained to
recognize that type of object.

Model selection
Select the model that you want to use:

System default (GoogLeNet)
Models trained with this model can only be run on a GPU. This option is only
available when training for image classification.

Accuracy (Faster R-CNN)
Models optimized for accuracy can only be run on a GPU. This option is only
available when training for object detection.

Speed (tiny YOLO V2)
Models optimized for speed can be run anywhere, but might not be as accurate as
those optimized for accuracy. These models use “you only look once” (YOLO) V2 and
will take several hours to train. This option is only available when training for object
detection.

You will choose the accelerator to deploy to when deploying the model. You can
choose GPU, CPU, or Xilinx FPGA - 16 bit (technology preview).

Segmentation (Detectron)
Detectron Mask R-CNN models can only be run on a GPU. They can use objects
labeled with polygons for greater training accuracy. Labeling with polygons is

62 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

especially useful for small objects, objects that are at a diagonal, and objects with
irregular shapes. However, training a data set that uses polygon labels takes longer
than training with rectangular bounding boxes. If you want to use a Detectron model
but want a shorter training time, you can disable segmentation and PowerAI Vision
will use rectangles instead of polygons. The actual images are not modified, so you
can train with segmentation later.

Custom model
Select an imported model to use for training.

Advanced options

Base model
You must select a base model when training for image classification with GoogLeNet.
You can optionally choose a base model when training for object detection with Faster
R-CNN.

When you specify a base model, PowerAI Vision uses the information in the base
model to train the new model. This allows you to transfer learning that has already
been done with one model to a new model, resulting in more accurate training. You
can choose a model that is included with PowerAI Vision, or you can choose your
own model that you previously trained or imported. For models that were trained in
PowerAI Vision versions prior to 1.1.2, the list of associated objects or categories is not
shown in the user interface. However, those models are still usable.

The base model's network must be Faster R-CNN (for object detection) or GoogLeNet
(for image classification). Only viable models are listed in the Base model table.

Note: Base models are not available for tiny YOLO v2, Detectron, and custom models
used for object detection, or custom models used for image classification.

PowerAI Vision comes with several common models such as flowers, food, and so on,
that you can use to help classify your data. If you do not select a base model when
training with GoogLeNet, General is used. For more information, see “Base models
included with PowerAI Vision” on page 73.

Model hyperparameters
For advanced users, these setting are available to help fine-tune the training.

Max iteration
The maximum number of times the data is passed through the training
algorithm, up to 1,000,000 iterations.

Momentum (Object detection only)
This value increases the step size used when trying to find the minimum
value of the error curve. A larger step size can keep the algorithm from
stopping at a local minimum instead of finding the global minimum.

Ratio PowerAI Vision automatically “splits” the data set for internal validation of
the model’s performance during training. The default Ratio value of 80/20
will result in 80% of the images in the data set (at random) being used for
training, and 20% being used for measurement / validation.

Test iteration (Image classification only)
The number of times data is passed through the training algorithm before
possible completion. For example, if this value is 100, and Test interval is 50,
the model is run through the algorithm at least 100 times; being tested ever 50
times.

Test interval (Image classification only)
The number of times the model is passed through the algorithm before

Training and working with models 63

testing. For example, if this value is 50, the model is tested every 50 iterations.
Each of these tests becomes a data point on the metrics graphs.

Learning rate
This option determines how much the weights in the network are adjusted
with respect to the loss gradient. A correctly tuned value can result in a
shorter training time. However, it is recommended that only advanced users
change this value.

Weight decay
This value specifies regularization in the network. It protects against
over-fitting and is used to multiply the weights when training.

Note: If a training job appears to be hanging, it might be waiting for another training job to complete,
or there might not be a GPU available to run it. For information to fix this, see “PowerAI Vision
cannot train a model” on page 116.

3. (Optional - Only supported when training for object detection.) Stop the training process by clicking Stop
training > Keep Model > Continue.
You can wait for the entire training model process complete, but you can optionally stop the training
process when the lines in the training graph start to flatten out. This is because improvements in
quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine
the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with
Detectron), because larger iteration counts and training times have been demonstrated to improve
accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can
still being improved even when the accuracy of identifying the object location stopped improving.
Understanding the model training graph

As PowerAI Vision trains the model, the graph shows the relative performance of the model over
time. The model should converge at the end of the training with low error and high accuracy.
In the figure, you can see the Loss CLS line and the Loss Bbox lines start to plateau. In the training
graph, the lower the loss value, the better. Therefore, you can stop the training process when the loss
value stops decreasing. The training model has completed enough iterations and you can continue to
the next step.

64 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have
enough information. The same is true if the accuracy of the training graph fails to rise or the errors in
the graph do not decrease at the end of the training process. For example, a model with high accuracy
might be able to discover all instances of different race cars, but might have trouble differentiating
between specific race cars or those that have different colors. In this situation, add more images or
video frames to the data set, label them, then try the training again.

Related concepts:
“Understanding metrics” on page 79
PowerAI Vision provides several metrics to help you measure how effectively your model has been
trained.

Working with custom models
You can save time and resources by using your own TensorFlow based custom models (also referred to as
custom networks) with PowerAI Vision. In general, custom models work the same as any other model in
PowerAI Vision. However, there are some differences you should understand.

When you upload a custom model to the Custom Models page, you can use the model to train a data set
in PowerAI Vision and generate a PowerAI Vision trained model.

Note: Custom models cannot be used to import pre-trained models into PowerAI Vision. Additionally,
transfer learning is not supported with custom models.

Use the information in this topic to prepare a PowerAI Vision trained model by using a custom
TensorFlow model: “Preparing a model that will be used to train data sets in PowerAI Vision” on page
66.

This repository has examples with detailed instructions and sample files for using custom models.

Figure 9. Model training graph

Training and working with models 65

https://github.com/ibmccmpl/paiv-custom-models

Preparing a model that will be used to train data sets in PowerAI Vision
If your custom model will be used to train data sets in the PowerAI Vision framework, your custom
model must meet the following requirements.

After the model is properly prepared, upload it to PowerAI Vision by opening the Custom Models page
and clicking Browse files. You can then use it to train a data set. Follow these instructions to train a data
set; selecting Custom model: “Training a model” on page 62.

Custom model requirements:

v It must be TensorFlow based.
v It must implement the MyTrain Python class.

– The MyTrain implementation must reside in a file named train.py in the top level directory of the
zip file contents.

– The following import must be added to the train.py file in order to define the training callbacks:
from train_interface import TrainCallback

– The class name must be MyTrain.

MyTrain Template:
class MyTrain(TrainCallback):

def __init__():
pass

def onPreprocessing(self, labels, images, workspace_path, params):
pass

def onTraining(self, monitor_handler):
pass

def onCompleted(self, model_path):
pass

def onFailed(self, train_status, e, tb_message):
pass

This repository has examples with detailed instructions and sample files for using custom models.

class MyTrain(TrainCallback):

Use the MyTrain API to prepare a TensorFlow model that will be used to train data sets with PowerAI
Vision.
v “Template”
v “def onPreprocessing(self, labels, images, workspace_path, params)” on page 67
v “def onTraining(self, monitor_handler)” on page 68
v “def onCompleted(self, model_path)” on page 68
v “def onFailed(self, train_status, e, tb_message):” on page 68
v “Monitoring and reporting statistics” on page 68

Template

This is a template you can use for the MyTrain API:
class MyTrain(TrainCallback):

def __init__():
pass

def onPreprocessing(self, labels, images, workspace_path, params):
pass

def onTraining(self, monitor_handler):
pass

66 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://github.com/ibmccmpl/paiv-custom-models

def onCompleted(self, model_path):
pass

def onFailed(self, train_status, e, tb_message):
pass

def onPreprocessing(self, labels, images, workspace_path, params)

Callback for data set preprocessing.

Input

labels (dict)
Image categories and index.

Example: {’safety_vest’: 1, ’helmet’: 0, ’no_safety_vest’: 2, ’no_helmet’: 3}

images

v image classification (dict): Image path and its category.
Example: {’/dataset/Acridotheres/001.jpg’: ’Acridotheres’, ’/dataset/Butorides/
002.jpg’: ’Gallinula’, ’/dataset/Butorides/003.jpg’: ’Butorides’}

v object detection (list): List of annotation objects; including the image name and annotation.
Example:
[annotation[0] annotation[1] ...]
image filename
annotations[0].filename: /dataset/safety-detection/ee1fba93-a5f0-4c8b-8496-ce7605914651.jpg
image size [width, height, depth]
annotations[0].size: [450, 330, 3]
bounding box #0 label
annotations[0].objects[0].label: helmet
bounding box #0 position [xmin, ymin, xmax, ymax]
annotations[0].objects[0].bbox: [111, 16, 205, 106]
annotations[0].objects[1].label: helmet
annotations[0].objects[1].bbox: [257, 42, 340, 140]
annotations[0].objects[2].label: safety_vest
annotations[0].objects[2].bbox: [40, 105, 215, 291]
annotations[0].objects[3].label: safety_vest
annotations[0].objects[3].bbox: [207, 124, 382, 309]

workspace_path (string)
Temporary workspace path recommended to be used in all training life cycles.

Example: “/tmp/workspace”

params (dict)
Hyper parameters for training. These parameters are available to the custom model, but they are
not required.
v Object detection example:

{ ’max_iter’ : 4000, ’learning_rate’ : 0.001, ’weight_decay’ : 0.0005, ’momemtum’ :
0.9 , ’traintest_ratio’ : 0.8 }

v Classification example:
{ ’max_iter’ : 4000, ’learning_rate’ : 0.001, ’weight_decay’ : 0.0005,
’test_iteration’ : 100, ’test_interval’ : 20}

Output:

None

Training and working with models 67

def onTraining(self, monitor_handler)

Callback for training.

Input

monitor_handler (MonitorHandler): Handler for train/test status monitoring.

Output

None

def onCompleted(self, model_path)

Callback for training completed. A training task is terminated either with onCompleted() or with
onFailed(). You need to save the trained model in this callback.

Input

model_path (String): The absolute model path and file.

Output

None

def onFailed(self, train_status, e, tb_message):

Callback for training failed. A train task is terminated either with onCompleted() or with onFailed()

Input

train_status (string)
Training status when the failure occurred.

e (Exception object)
Programming exception object.

tb_message (string)
Formatted traceback message.

Output

None

Monitoring and reporting statistics

The onTraining API passes a monitor_handler object. This object provides callbacks to report both
training and test messages back to PowerAI Vision. Depending on the type of training being performed,
classification or object detection, the appropriate callback must be used.

Object detection callbacks:

Use this callback when the custom model is trained for object detection.
v “def updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)” on page 69
v “def updateTestMetrics(mAP)” on page 69

68 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

def updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)

Handler for status updates from the training process. This should be called actively by your custom code
to post training status to the PowerAI Vision user interface.

Input

current_iter (int)
Current iteration in the epoch

max_iter (int)
Maximum iterations in one epoch

loss_cls (float)
Training loss of classification

loss_bbox (float)
Training loss of bounding box prediction

epoch (int)
Current training epoch

Example

monitor_handler.updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)

Output

None

def updateTestMetrics(mAP)

Handler for status updates from the testing process. This should be called actively by your custom code
to post testing status to the PowerAI Vision user interface.

Input

mAP (float): Testing mean average precision

Example

monitor_handler.updateTestMetrics(mAP)

Output

None

Classification callbacks:

Use this callback when the custom model is trained for image classification.
v “def updateTrainMetrics(current_iter, max_iter, loss, epoch)”
v “def updateTestMetrics(current_iter, accuracy, loss, epoch)” on page 70

def updateTrainMetrics(current_iter, max_iter, loss, epoch)

Handler for status updates from the training process. This should be called actively by your custom code
to post training status to the PowerAI Vision user interface.

Training and working with models 69

Input

current_iter (int)
Current iteration in the epoch

max_iter (int)
Maximum iterations in one epoch

loss (float)
Training loss

epoch (int)
Current training epoch

Example

monitor_handler.updateTrainMetrics(current_iter, max_iter, loss, epoch)

Output

None

def updateTestMetrics(current_iter, accuracy, loss, epoch)

Handler for status updates from the testing process. This should be called actively by your custom code
to post testing status to the PowerAI Vision user interface.

Input

current_iter (int)
Current iteration in the epoch

accuracy (float)
Testing accuracy

loss (float)
Training loss

epoch (int)
Current training epoch

Example

monitor_handler.updateTrainMetrics(iter_num, accuracy, loss, epoch_num)

Output

None

Preparing a model that will be deployed in PowerAI Vision
If your custom model will be deployed in the PowerAI Vision framework, your custom model must meet
the following requirements.

After the model is properly prepared, import it to PowerAI Vision by navigating to the Models page and
clicking Import .zip file. To deploy the model, on the Models page, select the model and click Deploy
model.

Custom model requirements:

v It must be TensorFlow based.
v It must implement the MyDeploy Python class.

70 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

– The MyDeploy implementation must reside in a file named deploy.py in the top level directory of the
zip file contents.

– The following import must be added to the deploy.py file in order to define the training callbacks:
from deploy_interface import DeployCallback

– The class name must be MyDeploy.

MyDeploy Template:
class MyDeploy(DeployCallback):
def __init__(self):

pass
def onModelLoading(self, model_path, labels, workspace_path):

pass
def onTest(self):

pass
def onInference(self, image_url, params):

pass
def onFailed(self, deploy_status, e, tb_message):

pass

class MyDeploy(DeployCallback):

Use the MyDeploy API to prepare a TensorFlow model that will be deployed in PowerAI Vision.

Template

This is a template you can use for the MyDeploy API:
class MyDeploy(DeployCallback):
def __init__(self):

pass
def onModelLoading(self, model_path, labels, workspace_path):

pass
def onTest(self):

pass
def onInference(self, image_url, params):

pass
def onFailed(self, deploy_status, e, tb_message):

pass

def onModelLoading(self, model_path, labels, workspace_path)

Callback for load model.

Input

model_path (string)
Model path. The model must be decompressed before this callback.

workspace_path (string)
Temporary workspace path recommended to be used in all deploy activities.

labels (dict)
The label index to name mapping.

Example: {1: ’safety_vest’, 0: ’helmet’, 2: ’no_safety_vest’, 3: ’no_helmet’}

Output:

None

Training and working with models 71

def onTest(self)

Test API interface with a custom message.

Input

None

Output

message (string): Output message.

def onInference(self, image_url, params)

Inference with a single image.

Input

image_url (string)
Path of the image for inference.

params (dict)
Additional inference options.

heatmap (string)
Request a heat map. This is only supported for classification. Possible values:
v "true" : A heat map is requested.
v "false" : A heat map is not requested.

conf_threshold (float)
Confidence threshold. Value in the range 0.0 - 1.0, to be treated as a percentage. Only results with
a confidence greater than the specified threshold are returned. The smaller confidence threshold
you specify, the more results are returned. If you specify 0, many, many results will be returned
because there is no filter based on the confidence level of the model.

Output (classification)

result({"label": "apple", "confidence": 0.9, "heatmap": "_value_"}): predicted label and its score
label (string) : predicted label nameconfidence (float) : number for certainty. between 0 and 1
heatmap (string) : heatmap return

Output (object detection)

result([{"confidence": 0.95, "label": "badge", "ymax": 145, "xmax": 172, "xmin": 157, "ymin": 123}]): predicted results in list
confidence(float): number for certainty. between 0 and 1
label(string): predicted label nameymax(int): the max Y axis of bounding boxxmax(int): the max X axis of bounding box
ymin(int): the min Y axis of bounding boxxmin(int): the min X axis of bounding box

def onFailed(self, deploy_status, e, tb_message)

Callback for deploy failed. A deploy task is terminated with onFailed().

Input

deploy_status (string)
Deploy status when the failure occurred.

72 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

e (Exception object)
Programming exception object.

tb_message (string)
Formatted traceback message.

Output

None

Base models included with PowerAI Vision
You can use a base model to help train your model. You can choose your own Faster R-CNN or
GoogLeNet model, or select one of the models that is included with PowerAI Vision.

Table 2. Base models included with PowerAI Vision

Type Number of images Size Source

Action 9532 310M Stanford 40 actions

Flower 8189 348M Visual Geometry Group

Food 1503 14.6M https://ibm.box.com/s/cbocm5pvtyudaoaypdwl3jaypets1hel

General ImageNet dataset ilsvrc12 http://image-net.org/download

Landscape 1472 22.2M Proprietary data set

Scene 108754 38G SUN database

Vehicle 16185 1.9G https://ai.stanford.edu/%7Ejkrause/cars/car_dataset.html

Deploying a trained model
Deploy a trained model to get it ready to use within PowerAI Vision or a different program, such as IBM
PowerAI. Deploying a model creates a unique API endpoint based on that model for inference
operations.

To deploy the trained model, follow these steps:
1. Click Models from the menu.
2. Select the model you want to deploy and click Deploy.
3. Specify a name for the model, and for models that were trained with the Optimized for speed (tiny

YOLO v2) model, choose the accelerator to deploy to. You can choose GPU, CPU, or Xilinx FPGA - 16
bit (technology preview).

Note: Deploying a model to a Xilinx FPGA requires the Xilinx Alveo U200 Accelerator card.
GPUs are used as follows:
v Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is

listed as '-', which indicates that this model uses a full GPU and does not share the resource with
any other deployed models.

v Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses
packing to deploy the models. That is, the model is deployed to the GPU that has the most models
deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to
determine which deployed models share a GPU resource. To free up a GPU, all deployed models in
a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.
4. Click Deploy. The Deployed Models page is displayed. When the model has been deployed, the

status column displays Ready.

Training and working with models 73

http://vision.stanford.edu/Datasets/40actions.html
http://www.robots.ox.ac.uk/%7Evgg/data/flowers/102/index.html
https://ibm.box.com/s/cbocm5pvtyudaoaypdwl3jaypets1hel
http://image-net.org/download
http://groups.csail.mit.edu/vision/SUN/
https://ai.stanford.edu/%7Ejkrause/cars/car_dataset.html
https://www.xilinx.com/products/boards-and-kits/alveo/u200.html

5. Click the deployed model to get the API endpoint, to view details about the model, such as the owner
and the accuracy, and to test other videos or images against the model. For information about using
the API see Vision Service API documentation.

Note: When using the API, the smaller confidence threshold you specify, the more results are
returned. If you specify 0, many, many results will be returned because there is no filter based on the
confidence level of the model.

6. If necessary, you can delete a deployed model. To delete a deployed model, click Deployed Models.
Next, select the model that you want to delete and click Delete. The trained model is not deleted
from PowerAI Vision.

Related concepts:
“Working with the user interface” on page 51
The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the
action bar, the data area, and the notification center.
“Understanding metrics” on page 79
PowerAI Vision provides several metrics to help you measure how effectively your model has been
trained.
Related information:

Vision Service API documentation

PowerAI Vision REST APIs
You can use REST APIs to work with PowerAI Vision data sets and models, such as performing training
and deployment. You can also use them to perform administrative tasks, such as monitoring events.
These APIs allow you to bypass the user interface and automate PowerAI Vision processes or solutions.

For information about using the API see Vision Service API documentation. There are also examples of
using the APIs for different actions, published here.

Testing a model
After deploying your model, you should test it against other images and videos to make sure that it
works as expected.
1. Click Deployed Models from the menu.
2. Click the model you want to test. The model opens in the Deployed model page.
3. Use the Test Videos (object detection models only) or Test Images areas to upload images and videos,

one at a time.
4. The results are shown on the bottom of the window.
v If you used an image to test an image classification model, test result displays the uploaded picture

with the resultant heat map overlayed, and gives the classification and the confidence of the
classification. Multiple classes are returned with the decreasing levels of confidence for the different
classes. The heat map is for the highest confidence classification and can help you determine
whether the model has correctly learned the features of this classification. To hide classes with a
lower confidence level, use the Confidence threshold slider.
The red area of the heat map corresponds to the areas of the picture that are of highest relevance.
Use the slider to change the opacity of the heat map. Because the heat map is a square, the test
image is compressed into a square. This might cause the image to look distorted, but it will reliably
show you the areas that the algorithm identified as relevant.

v If you used an image to test an object detection model, the identified objects are labeled in the
image, with the calculated precision.

74 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html
http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html
http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html
https://github.com/IBM/powerai/tree/master/vision/tools/vapi/cli

v If you used a video to test an object detection model, the video is processed, then as you watch the
processed video, the identified objects are labeled as they appear in the video. All objects are
labeled using bounding boxes, even if the model is trained for segmentation. Processing the video
might take a while, depending on its size.

5. If you are satisfied with the results, the model is ready to be used in production. Otherwise, you can
refine the model by following the instructions in this topic: “Refining a model.”

Refining a model
After deploying a model, you can improve its accuracy by supplying more data. There are several
methods you can use to add more data to the model.

You can add more data by using any combination of the following options:
1. Upload new images or videos to the data set and classify or label them as appropriate.
2. For an existing video, capture more frames and classify or label them as appropriate.
3. Use data augmentation. Data augmentation is the use of filters, such as blur and rotate, to create new

versions of existing images. When you use data augmentation, a new data set is created that contains
all of the existing images, plus the newly generated images. For instructions, see “Augmenting the
data set” on page 77.

4. For models trained for object detection, you can use the Auto label function to identify more objects
in the existing data. See “Automatically labeling objects” for instructions.

After adding more data, train the model again.

Automatically labeling objects
After deploying a model for object detection, you can improve its accuracy by using the Auto label
function. This function improves the model's accuracy by quickly adding more data to the data set.

Notes:

v You can automatically label images or videos that have not had labels manually added. If any labels
have been manually added, that image or frame is skipped.

v If labels have been added through auto label, those images and frames are reprocessed. The previous
labels are removed and new labels are added.

v If you use a trained Detectron model with segmentation turned on to generate the labels, polygons are
used instead of rectangular boxes.

v When performing multiple auto label operations on the same video, it is possible to get multiple
frames with the same time offset. This situation can occur when the intervals overlap and labels have
been edited on the frames at the overlap points.
For example, labeling at a 10 second interval, editing some of the labels on those frames, and then
labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images
at each of the 10 second intervals with edited labels.

v You can manually add labels to images and frames that have been auto labeled, and you can
manipulate (move, resize) the labels that were automatically generated. If an auto labeled frame or
image is edited, either by modifying an automatically generated label, or by manually adding a new
label, all auto label annotations in the frame or image are converted to manually labeled annotations. If
you then run Auto label again, those images and frames are skipped because the frame was manually
edited.

When you automatically label objects, an existing trained model is used to generate new labels in the
data set.
1. Open the data set that you want to add more data to and select Auto label.
2. Select the trained model to use, then click Auto label.

Training and working with models 75

3. Labels are added to existing images or videos have not been manually labeled. By default, the
automatically added labels are light red. For videos, if frames have already been captured, those
frames are used for auto labeling. If frames have not been captured, the video is ignored.

Automatically labeling objects in a data set
When you auto label a data set, an existing trained model is used to generate labels for images and video
frames that have not been manually labeled.

Notes:

v All images and frames that were not manually labeled are processed. Therefore, objects that contain
only labels that were added by using the auto label function are reprocessed. The previous labels are
removed and new labels are added.

v When auto labeling a data set, only images and frames are auto labeled. Therefore, any videos that do
not have captured frames are skipped.

Follow these steps to generate new labels in the data set.
1. Open the data set that you want to add more data to and select Auto label.
2. Select the trained model to use, then click Auto label.
3. Labels are added to existing images or videos have not been manually labeled. By default, the

automatically added labels are light red and manually added labels are blue.

You can manually add labels to images and frames that have been auto labeled, and you can manipulate
(move, resize) the labels that were automatically generated. If an auto labeled frame or image is edited,
either by modifying an automatically generated label, or by manually adding a new label, all auto label
annotations in the frame or image are converted to manually labeled annotations. If you then run Auto
label again, those images and frames are skipped because the frame was manually edited.

Automatically labeling videos
When using the auto label function on a data set, only frames and images processed. Videos are ignored.
However, you can run the auto label function on an individual video.

Note: Any frames that were previously captured by using auto capture and were not manually labeled
are deleted before auto labeling. This helps avoid labeling duplicate frames. Manually captured frames
are not deleted.

Follow these steps to run the auto label function on a video.
1. Open the data set that contains the video.
2. Select the video and click Label objects.
3. Click Auto label then choose the time interval to capture frames and the trained model to use for

labeling, then click Auto label.
4. Frames are captured at the specified interval and labels are added by using the specified trained

model. By default, the automatically added labels are light red.

After processing, you can manually add labels to the frames that have been auto labeled and you can
manipulate (move, resize) the labels that were automatically generated. If a frame with automatically
generated labels is edited, all labels on the frame are converted to manual labels.

When performing multiple auto label operations on the same video, it is possible to get multiple frames
with the same time offset. This situation can occur when the intervals overlap and labels have been
edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then
labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at
each of the 10 second intervals with edited labels.

76 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Augmenting the data set
After deploying a model, you can improve the model by using data augmentation to add modified
images to the data set, then retraining the model. Data augmentation is the use of filters, such as blur and
rotate, to create new versions of existing images. When you use data augmentation, a new data set is
created that contains all of the existing images, plus the newly generated images.

To augment a data set, follow these steps:
1. Open the data set for a deployed model.
2. Select the images to use for augmentation, then click Augment data. If you select a video, every

captured frame is used for augmentation. If you select some, but not all, frames in a video, only the
selected frames are used for augmentation.

3. Choose any combination of filters to apply to your data set, then click Continue.
Each filter generates one or more new versions of each selected image; the filters are not cumulative.
For example, if you select Sharpen and Flip horizontal, six new images are generated; one flipped
and five sharpened.
When you select a filter, you can see an example of what that filter would do to an image. This
sample image is not a live preview of the filter. It is an example of what an image might look like
with that filter applied. Some filters, such as Blur and Sharpen, have additional settings you can
choose.

4. Specify a name for the new data set and click Create data set.
5. The new data set, containing the original images, is created immediately. The augmented images are

added after all processing completes. After the new data set is created, you can train a model based
on the new data set. See this topic for instructions: “Training a model” on page 62.

Augmentation settings
These settings are available when augmenting data.

Each filter generates one or more new versions of each selected image; the filters are not cumulative. For
example, if you select Sharpen and Flip horizontal, six new images are generated; one flipped and five
sharpened.

Note: When you select a filter, you can see an example of what that filter would do to an image. This
sample image is not a live preview of the filter. It is an example of what an image might look like with
that filter applied.

Blur Select the maximum amount of Gaussian and motion blur. Gaussian blur makes the entire image
appear out of focus by reducing detail and noise. Motion blur makes the image appear as if it (or
the camera) is in motion.

Five new images are generated in the range of each nonzero selection. For example, if Motion =
25 and Gaussian = 10, then five images are generated by applying a motion blur filter in random
strengths in the range 0-25, and five additional images are generated by applying a Gaussian blur
filter in the range 0-10.

Sharpen
Select the maximum amount of sharpening to apply. Some noise will be introduced. Five new
images are generated in the specified range. For example, if Sharpness = 25, five new images are
generated by applying the sharpen filter in random strengths in the range of 0-25.

Color Select the maximum amount of change in the image's brightness, contrast, hue, and saturation.
Five new images are generated by using randomly selected values in the selected ranges. The
resultant values can be either positive or negative.

For example, if Brightness = 30, Contrast = 15, Hue = 5, and Saturation = 10, five images are
generated that have brightness changed by (-30, 30)% , contrast is changed by (-15, 15)%, and so
on.

Training and working with models 77

Crop Select the maximum percentage of the image that should remain. For example, selecting 25 means
that at most 25% of the original image remains and 75% is removed. Five new images will be
generated that are cropped in the selected range. The crop is centered at a random point.

For example, if Crop = 25, five images are generated cropped to retain 100% - 25% of the original
image.

Vertical flip
Create a new image by flipping the existing image across the top edge. That is, the top of the
image becomes the bottom.

Horizontal flip
Create a new image by flipping the existing image across the side edge. That is, the left side of
the image becomes the right side.

Rotate Select the maximum value of rotation for the new images. Rotation can be either clockwise or
counter-clockwise. Five new images are generated that are rotated by this amount. For example, if
this value is 45, five new images are generated that are rotated either clockwise or
counter-clockwise by a random number in the range 0-45.

Noise Select the maximum amount of noise to add to the new images, specified as a percentage of what
PowerAI Vision determines to be a reasonable amount of noise for the images to remain usable.
Therefore, if you select 100, none of the generated images will have 100% noise added. Instead,
the output images will possibly have the maximum amount of noise added while still remaining
usable.

Five new images are generated with noise added in the specified range. For example, if this value
is 25, five new images are created with a random amount of noise added in the range 0 - 25% of
a reasonable amount of noise.

Importing and exporting PowerAI Vision information
You can import and export PowerAI Vision models and data sets. This allows you to save them for
archiving then use them later, use them on a different PowerAI Vision install, and so on.
v “Exporting”
v “Importing” on page 79

Exporting

Export a data set
To export a data set, open the Data sets page, open the data set you want to export, then click
Export in the action bar. The data set is saved in your default download directory as
data_set_name.zip. This zip file contains the images as well as any tags or categories you have
assigned.

Notes:

v When exporting a data set, any objects that are not used in the data set are not contained in
the exported data set. Therefore, they are not included when the data set is imported.
For example, if the object or label “car” is defined but is not used in any of the images in the
data set, the exported data set does not include the “car” object or label. When the data set is
imported, the “car” object or label is not created.

v In PowerAI Vision 1.1.1, any information about augmented images is lost on export. Therefore,
if the data set is later imported (regardless of the product version), the augmented images will
be in the data set, but they will no longer be marked as augmented.

Export a model
When you export custom trained model (a model that was trained by using a custom model), the
generated zip file is not encrypted or password protected, unlike with other models exported
from PowerAI Vision.

78 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

To export a model, open the Models page, select the model you want to export, then click Export
in the left pane. The model is saved in your default download directory as character_string.zip;
where character_string is randomly generated by the system.

Note:

If the model is not a Custom model that was imported from the Models page, the exported
model can only be used with PowerAI Vision. It can be imported into the Inference Server
product and deployed with the Inference Server product.

It is not recommended that you use an exported model with an earlier version of the product
than it was exported from. Additionally, a model from a prior version will not have support for
features that were added to later versions of the product. That is, if you export a model from
version x.1 and import it into x.2, features that were added in x.2 will not be supported on the
imported model.

Importing

Import a data set

1. Navigate to the Data sets page.
2. Drag and drop an exported data set .zip file onto the Create box.

Important: After the upload starts, do not close the PowerAI Vision tab or refresh the page.
Doing so stops the upload.

3. After the upload completes, the data set has its original name.

Notes:

v In PowerAI Vision 1.1.1, any information about augmented images is lost on export. Therefore,
if the data set is later imported (regardless of the product version), the augmented images will
be in the data set, but they will no longer be marked as augmented.

v The data set associated with a model is not preserved when it is exported. Therefore, for
imported models, the Data set field is set to “Not found”.

Import a model

Instead of using PowerAI Vision to train a new model, you can import a model that was
previously trained with PowerAI Vision, and was then exported. This lets you streamline data
processing by offloading training tasks and allowing you to reuse models on multiple systems.
After the model is imported to the Models page, you can deploy it in PowerAI Vision. Use the
information in this topic to prepare a custom model that will be deployed in PowerAI Vision:
“Preparing a model that will be deployed in PowerAI Vision” on page 70.
1. Navigate to the Models page.
2. Drag and drop a previously exported model .zip file onto the Import box.

Important: After the upload starts, do not close the PowerAI Vision tab or refresh the page.
Doing so stops the upload.

3. After the upload completes, the model has its original name.

Understanding metrics
PowerAI Vision provides several metrics to help you measure how effectively your model has been
trained.

To understand these metrics, you must understand these terms:

Training and working with models 79

True positive
A true positive result is when PowerAI Vision correctly labels or categorizes an image. For
example, categorizing an image of a cat as a cat.

False positive
A false positive result is when PowerAI Vision labels or categorizes an image when it should not
have. For example, categorizing an image of a cat as a dog.

True negative
A true negative result is when PowerAI Vision correctly does not label or categorize an image. For
example, not categorizing an image of a cat as a dog.

False negative
A false negative result is when PowerAI Vision does not label or categorize an image, but should
have. For example, not categorizing an image of a cat as a cat.

Of course, for a model in production, the values for true negative / positive and false negative / positive
can't accurately be known. These values are the expected values for these measurements.
v “Metrics for image classification (Trained for accuracy)”
v “Metrics for object detection (Trained for accuracy)” on page 81
v “Metrics for object detection using the Tiny Yolo model (Trained for speed)” on page 81
v “Metrics for custom models” on page 82

Metrics for image classification (Trained for accuracy)

Accuracy
Measures the percentage of correctly classified images. It is calculated by (true positives + true
negatives) / (true positives + true negatives + false positives+ false negatives).

PR curve (Advanced)
The precision-recall (PR) curve plots precision vs. recall (sensitivity). Because precision and recall
are typically inversely related, it can help you decide whether the model is appropriate for your
needs. That is, do you need a system with high precision (fewer results, but the results are more
likely to be accurate), or high recall (more results, but the results are more likely to contain false
positives)?

Precision
Precision tells describes how "clean" our population of hits is. It measures the percentage
of images that are correctly classified. That is, when the model classifies an image into a
category, how often is it correct? It is calculated by true positives / (true positives + false
positives).

Recall
The percentage of the images that were classified into a category, compared to all images
that should have been classified into that category. That is, when an image belongs in a
category, how often is it identified? It is calculated as true positives/(true positives + false
negatives).

Confusion matrix (Advanced)
The confusion matrix is used to calculate the other metrics, such as precision and recall. Each
column of the matrix represents the instances in a predicted class (those that PowerAI Vision
marked as belonging to a category). Each row represents the instances in an actual category.
Therefore, each cell measures how many times an image was correctly and incorrectly classified.

You can view the confusion matrix as a table of values or a heat map. A heat map is a way of
visualizing the data, so that the higher values appear more “hot” (closer to red) and lower values
appear more “cool” (closer to blue). Higher values show more confidence in the model.

This matrix makes it easy to see if the model is confusing categories, or not identifying certain
categories.

80 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Metrics for object detection (Trained for accuracy)

Accuracy
Measures the percentage of correct image classifications. It is calculated by (true positives + true
negatives) / all cases.

Mean Average precision (mAP)
The average over all classes of the maximum precision for each object at each recall value.
Precision measures how accurate the model is. That is, the percent of the classified objects that
are correct. Recall measures how well the model returns the correct objects. For example, out of
100 images of dogs, how many of them were classified as dogs?

To calculate this, first, the PR curve is found. Then, the maximum precision for each recall value
is determined. This is the maximum precision for any recall value greater than or equal to the
current recall value. For example, if the precision values range from .35 to .55 (and then never
reach .55 again) for recall values in the interval .3 - .6, then the maximum precision for every
recall value in the interval .3 - .6 is set to .55.

The mAP is then calculated as the average of the maximum precision values.

IoU (Intersection over union)
The accuracy of the location and size of the image label boxes.

It is calculated by the intersection between a ground truth bounding box and a predicted
bounding box, divided by the union of both bounding boxes; where the intersection is the area of
overlap, a ground truth bounding box is the hand drawn box, and the predicted bounding box is the
one drawn by PowerAI Vision.

Confusion matrix (Advanced)
The confusion matrix is used to calculate the other metrics, such as precision and recall. Each
column of the matrix represents the instances in a predicted class (those that PowerAI Vision
marked as belonging to a category). Each row represents the instances in an actual category.
Therefore, each cell measures how many times an image was correctly and incorrectly classified.

You can view the confusion matrix as a table of values or a heat map. A heat map is a way of
visualizing the data, so that the higher values appear more “hot” (closer to red) and lower values
appear more “cool” (closer to blue). Higher values show more confidence in the model.

This matrix makes it easy to see if the model is confusing categories, or not identifying certain
categories.

PR curve (Advanced)
The precision-recall (PR) curve plots precision vs. recall (sensitivity). Because precision and recall
are typically inversely related, it can help you decide whether the model is appropriate for your
needs. That is, do you need a system with high precision (fewer results, but the results are more
likely to be accurate), or high recall (more results, but the results are more likely to contain false
positives)?

Precision
Precision tells describes how "clean" our population of hits is. It measures the percentage
of objects that are correctly identified. That is, when the model identifies an object, how
often is it correct? It is calculated by true positives / (true positives + false positives).

Recall The percentage of the images that were labeled as an object, compared to all images that
contain that object. That is, how often is an object correctly identified? It is calculated as
true positives/(true positives + false negatives).

Metrics for object detection using the Tiny Yolo model (Trained for speed)

Accuracy
Measures the percentage of correctly classified objects. It is calculated by (true positives + true
negatives) / (true positives + true negatives + false positives+ false negatives).

Training and working with models 81

Metrics for custom models

When a custom model is imported and deployed, the following metric is shown:

Accuracy
Measures the percentage of correct categorizations. It is calculated by (true positives + true
negatives) / (true positives + true negatives + false positives + false negatives).

82 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Using PowerAI Vision

These fictional examples give step-by-step instructions of how to use PowerAI Vision to accomplish
various tasks.

Scenario: Detecting objects in images
In this fictional scenario, you want to create a deep learning model to determine the make and model of
a car caught by a traffic camera.

The image file used in this scenario is available for download here: Download car image.

To create a deep learning model, you will perform the following steps:
1. “Import images and create a data set”
2. “Labeling objects in an image”
3. “Training a model” on page 84
4. “Deploying a trained model” on page 85

Import images and create a data set

First, create a data set and add images to it.
1. Log in to PowerAI Vision.
2. Click Data Sets in the navigation bar to open the Data Sets page. There are several ways to create a

new data set. We will create a new, empty data set.
3. From the Data set page, click the icon and name the data set Traffic camera.
4. To add an image to the data set, click the Traffic image data set and click Import file or drag the

image to the + area.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload
completes. You can navigate to different pages within PowerAI Vision during the upload.

Labeling objects in an image

The next step is to label objects in the images. For object detection, you must have at minimum five
labels for each object. We will create “Black car” and “White car” objects and will label at least five
images as black cars, and at least five as white cars.
1. Select the images from your data set and click Label Objects.
2. Create new object labels for the data set by clicking Add new by the Objects list. Enter Black car,

click Add, then enter Black car, then click OK.
3. Label the objects in the images:

a. The first image is open in the data area, with thumbnails of all the selected image on the left side.
Select the correct object label, for example, “Black car”.

b. Choose Box or Polygon from the bottom left, depending on the shape you want to draw around
each object. Boxes are faster to label and train, but less accurate. Only Detectron models support
polygons. However, if you use polygons to label your objects, then use this data set to train a
model that does not support polygons, bounding boxes are defined and used. Draw the
appropriate shape around the object.

c. Select the thumbnail of the next image to open it. Add the appropriate labels, and continue
through the rest of the images.

© Copyright IBM Corp. 2018 83

http://ibm.biz/vision_samples_car_video

v Do not label part of an object. For example, do not label a car that is only partially in the image.
v If an image has more than one object, you must label all objects. For example, if you have cars and

motorcycles defined as objects for the data set, and there is an image with both cars and
motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the
accuracy of the model.

v Label each individual object. Do not label groups of objects. For example, if two cars are right next
to each other, you must draw a label around each car.

v Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
v You can draw shapes around objects that touch or overlap. For example, if one object is behind

another object, you can label them both. However, it is recommended that you only label objects if
the majority of the object is visible.

v Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more
accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the
right edge, you might have to click the left arrow key several times to start panning in the other
direction.

v Shapes cannot extend off the edge of the image.
v After defining a shape, you can copy and paste it elsewhere in the same image or in a different

image by using standard keyboard shortcuts. After you paste it, you can refine the shape by
moving, adding, or removing points in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in
the image carousel. From the data set, select all images that will share shapes, then click Label
objects. All images will be listed in the image carousel in the left side of the Label objects window.

v Labeling with polygons

– To delete a point from an outline, ctrl+click (or cmd+click).
– To add a point to an outline, click the translucent white square between any two points on the

outline.
– To move a point on the outline, click it and drag.

4. After all objects are labeled in all of the image, click Done editing.

Training a model

With all the object labels that are identified in your data set, you can now train your deep learning
model. To train a model, complete the following steps:
1. From the Data set page, click Train.
2. Fill out the fields on the Train Data set page, ensuring that you select Object Detection. We will

choose Accuracy (faster R-CNN) for Model selection

3. Click Train.
4. (Optional - Only supported when training for object detection.) Stop the training process by clicking Stop

training > Keep Model > Continue.
You can wait for the entire training model process complete, but you can optionally stop the training
process when the lines in the training graph start to flatten out. This is because improvements in
quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine
the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with
Detectron), because larger iteration counts and training times have been demonstrated to improve
accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can
still being improved even when the accuracy of identifying the object location stopped improving.

84 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have
enough information. The same is true if the accuracy of the training graph fails to rise or the errors in
the graph do not decrease at the end of the training process. For example, a model with high accuracy
might be able to discover all instances of different race cars, but might have trouble differentiating
between specific race cars or those that have different colors. In this situation, add more images or
video frames to the data set, label them, then try the training again.

Deploying a trained model

To deploy the trained model, complete the following steps. GPUs are used as follows:
v Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as

'-', which indicates that this model uses a full GPU and does not share the resource with any other
deployed models.

v Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses
packing to deploy the models. That is, the model is deployed to the GPU that has the most models
deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to
determine which deployed models share a GPU resource. To free up a GPU, all deployed models in a
GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.
1. Click Models from the menu.
2. Select the model you created in the previous section and click Deploy.
3. Specify a name for the model, and click Deploy. The Deployed Models page is displayed, and the

model is deployed when the status column displays Ready.
4. Double-click the deployed model to get the API endpoint and test other videos or images against the

model. For information about using the API see Vision Service API documentation.

Figure 10. Model training graph

Using PowerAI Vision 85

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html

Next steps

You can continue to refine the data set as much as you want. When you are satisfied with the data set,
you can train the model again. This time when you train the model, you might want to train the model
for a longer time to improve the overall accuracy of the model. The loss lines in the training model graph
should converge to a stable flat line. The lower the loss lines are in the training graph the better. After the
training completes, you can deploy the model again. You can double-click the deployed model to get the
API endpoint and test other images or images against the model.

Scenario: Detecting objects in a video
In this fictional scenario, you want to create a deep learning model to monitor traffic on a busy road. You
have a video that displays the traffic during the day. From this video, you want to know how many cars
are on the busy road every day, and what are the peak times that have the most cars on the road.

The video file used in this scenario is available for download here: Download car video.

To create a deep learning model, you will perform the following steps:
1. Importing a video
2. Labeling objects in a video
3. Training a model
4. Deploying a model
5. Automatically label frames in a video

Import a video and create a data set

First, create a data set and add videos to it.
1. Log in to PowerAI Vision.
2. Click Data Sets in the navigation bar to open the Data Sets page. There are several ways to create a

new data set
3. From the Data set page, click the icon and name the data set Traffic Video.
4. To add a video to the data set, click the Traffic Video data set and click Import file or drag the video

to the + area.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload
completes. You can navigate to different pages within PowerAI Vision during the upload.

Labeling objects in a video

The next step is to label objects in the video. For object detection, you must have at minimum five labels
for each object. We will create Car and Motorcycle objects and will label at least five frames in the video
with cars and at least five frames with motorcycles.
1. Select the video from your data set and select Label Objects.
2. Capture frames by using one of these methods:
v Click Auto capture frames and specify a value for Capture Interval (Seconds) that will result in at

least five frames. We will select this option and specify 10 seconds.

Note: Depending on the length and size of the video and the interval you specified to capture
frames, the process to capture frames can take several minutes.

v Click Capture frame to manually capture frames. If you use this option, you must capture a
minimum of five frames from the video.

86 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://ibm.biz/vision_samples_car_video

3. If you used Auto capture frames, verify that there are enough of each object type in the video frames.
If not, follow these steps to add new frames to the existing data set.
In this scenario, the motorcycle is only in a single automatically captured frame at 40 seconds.
Therefore, we must capture at least four more frames with the motorcycle. The motorcycle comes into
view at 36.72 seconds. To correctly capture the motorcycle in motion we will create extra frames at
37.79 seconds, 41.53 seconds, and 42.61 seconds.
a. Play the video. When the frame you want is displayed, click pause.
b. Click Capture Frame.

4. Create new object labels for the data set by clicking Add new by the Objects list. Enter Car, click Add,
then enter Motorcycle, then click OK.

5. Label the objects in the frames:
v Select the first frame in the carousel.
v Select the correct object label, for example, “Car”.
v Choose Box or Polygon from the bottom left, depending on the shape you want to draw around

each object. Boxes are faster to label and train, but less accurate. Only Detectron models support
polygons. However, if you use polygons to label your objects, then use this data set to train a
model that does not support polygons, bounding boxes are defined and used. Draw the appropriate
shape around the object.

Note: When Box or Polygon is selected, you have to hold down the Alt key for non-drawing
interactions in the image. This includes trying to select, move, or edit previously drawn shapes in
the image, and panning the image by using the mouse. To return to the normal mouse interactions,
deselect the Box or Polygon button.

Review the following tips about identifying and drawing objects in video frames and images:
v Do not label part of an object. For example, do not label a car that is only partially in the frame.
v If an image has more than one object, you must label all objects. For example, if you have cars and

motorcycles defined as objects for the data set, and there is an image with both cars and
motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the
accuracy of the model.

v Label each individual object. Do not label groups of objects. For example, if two cars are right next
to each other, you must draw a label around each car.

v Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
v You can draw shapes around objects that touch or overlap. For example, if one object is behind

another object, you can label them both. However, it is recommended that you only label objects if
the majority of the object is visible.

v Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more
accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the
right edge, you might have to click the left arrow key several times to start panning in the other
direction.

v Shapes cannot extend off the edge of the frame.
v After defining a shape, you can copy and paste it elsewhere in the same image or in a different

image by using standard keyboard shortcuts. After pasting the shape, it can be selected and
dragged to the desired location in the image. The shape can also be edited to add or remove points
in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in
the image carousel. From the data set, select all images that will share shapes, then click Label
objects. All images will be listed in the image carousel in the left side of the Label objects window.

v Labeling with polygons

Using PowerAI Vision 87

– To delete a point from an outline, ctrl+click (or cmd+click).
– To add a point to an outline, click the translucent white square between any two points on the

outline.
– To move a point on the outline, click it and drag.

The following figure displays the captured video frame at 41.53 seconds with object labels of Car and
Motorcycle. Figure 1 also displays a box around the five frames (four of the frames were added
manually) in the carousel that required object labels for the motorcycle that is in each frame.

Training a model

With all the object labels that are identified in your data set, you can now train your deep learning
model. To train a model, complete the following steps:
1. From the Data set page, click Train.
2. Fill out the fields on the Train Data set page, ensuring that you select Object Detection. We will

choose Accuracy (faster R-CNN) for Model selection

3. Click Train.
4. (Optional - Only supported when training for object detection.) Stop the training process by clicking Stop

training > Keep Model > Continue.
You can wait for the entire training model process complete, but you can optionally stop the training
process when the lines in the training graph start to flatten out. This is because improvements in
quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine
the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with
Detectron), because larger iteration counts and training times have been demonstrated to improve
accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can
still being improved even when the accuracy of identifying the object location stopped improving.

Figure 11. Labeling objects in PowerAI Vision

88 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have
enough information. The same is true if the accuracy of the training graph fails to rise or the errors in
the graph do not decrease at the end of the training process. For example, a model with high accuracy
might be able to discover all instances of different race cars, but might have trouble differentiating
between specific race cars or those that have different colors. In this situation, add more images or
video frames to the data set, label them, then try the training again.

Deploying a trained model

To deploy the trained model, complete the following steps. GPUs are used as follows:
v Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as

'-', which indicates that this model uses a full GPU and does not share the resource with any other
deployed models.

v Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses
packing to deploy the models. That is, the model is deployed to the GPU that has the most models
deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to
determine which deployed models share a GPU resource. To free up a GPU, all deployed models in a
GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.
1. Click Models from the menu.
2. Select the model you created in the previous section and click Deploy.
3. Specify a name for the model, and click Deploy. The Deployed Models page is displayed, and the

model is deployed when the status column displays Ready.
4. Double-click the deployed model to get the API endpoint and test other videos or images against the

model. For information about using the API see Vision Service API documentation.

Figure 12. Model training graph

Using PowerAI Vision 89

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html

Automatically label frames in a video

You can use the auto label function to automatically identify objects in the frames of a video after a
model has been deployed.

In this scenario, you have only nine frames. To improve the accuracy for your deep learning model, you
can add more frames to the data set. Remember, you can rapidly iterate by stopping the training on a
model and checking the results of the model against a test data set. You can also use the model to auto
label more objects in your data set. This process improves the overall accuracy of your final model.

To use the auto label function, complete the following steps:

Note: Any frames that were previously captured by using auto capture and were not manually labeled
are deleted before auto labeling. This helps avoid labeling duplicate frames. Manually captured frames
are not deleted.
1. Click Data sets from the menu, and select the data set that you used to create the previously trained

model.
2. Select the video in the data set that had nine frames, and click Label Objects.
3. Click Auto label.
4. Specify how often you want to capture frames and automatically label the frames. Select the name of

the trained model that you deployed in step 3, and click Auto label. In this scenario, you previously
captured frames every 10 seconds. To improve the accuracy of the deep learning model by capturing
and labeling more frames, you can specify 6 seconds.

5. After the auto label process completes, the new frames are added to the carousel. Click the new
frames and verify that the objects have the correct labels. The object labels that were automatically
added are green and the object labels you manually added are in blue. In this scenario, the carousel
now has 17 frames.

Next steps

After processing, you can manually add labels to the frames that have been auto labeled and you can
manipulate (move, resize) the labels that were automatically generated. If a frame with automatically
generated labels is edited, all labels on the frame are converted to manual labels.

When performing multiple auto label operations on the same video, it is possible to get multiple frames
with the same time offset. This situation can occur when the intervals overlap and labels have been
edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then
labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at
each of the 10 second intervals with edited labels.

You can continue to refine the data set as much as you want. When you are satisfied with the data set,
you can retrain the model by completing steps 1 - 3. This time when you retrain the model, you might
want to train the model for a longer time to improve the overall accuracy of the model. The loss lines in
the training model graph should converge to a stable flat line. The lower the loss lines are in the training
graph the better. After the training completes, you can redeploy the model by completing steps 1 - 3. You
can double-click the deployed model to get the API endpoint and test other videos or images against the
model.
Related concepts:
“Working with the user interface” on page 51
The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the
action bar, the data area, and the notification center.

90 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

“Understanding metrics” on page 79
PowerAI Vision provides several metrics to help you measure how effectively your model has been
trained.
Related information:

Vision Service API documentation

Scenario: Classifying images
The goal of this example is to train a model to classify images of birds into groups based on their
physiological similarities. Once the model is trained with a known dataset, users can upload new data
sets to auto classify the birds into their respective categories. We will prepare the data, create a data set,
train the model, and test the model.
1. Prepare the data.

Data preparation consists of gathering two types of data, training data and test data. Training data is
used to teach the neural network features of the object so that it can build the classification model.
Test data is used to validate the accuracy of the trained model. Our data will include pictures of
different types of birds.

Notes:

v Different images should be used for training data and test data.
v Images must be in one of these formats:

– JPEG
– PNG

2. Create a data set. Log in to the PowerAI Vision user interface, click Data Sets in the navigation bar,
click Create new data set and name the data set Birds.

3. Populate the data set.
a. In the left pane, expand Categories, click Add category. Add the “Acridotheres” category and click

Add, then click OK.
b. Upload images of Acridotheres by dragging the images onto the Drag files here area.
c. In the left pane, click “Uncategorized”. The newly uploaded files are shown.
d. Click the Select box to select the images you just uploaded, then click Assign category and choose

“Acridotheres”.
e. Repeat the above steps for the other categories.

Note: To train a model for classification, the data set must meet these requirements:
v There must be at least two categories.
v Each category must have at least five images.

4. From the Data set page, click Train. In the Train data set window, choose Image classification and
keep the default values for all other settings, then click Train.

5. After training is complete, click Deploy model.

Important: Each deployed model uses one GPU.
6. Test the trained model. On the Deployed models page, open the model you just deployed. Scroll

down to the Test Images area and input a test image.
The test result displays the uploaded picture with the resultant heat map overlayed, and gives the
classification and the confidence of the classification. Multiple classes are returned with the decreasing
levels of confidence for the different classes. The heat map is for the highest confidence classification
and can help you determine whether the model has correctly learned the features of this classification.
To hide classes with a lower confidence level, use the Confidence threshold slider.

Using PowerAI Vision 91

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html

The red area of the heat map corresponds to the areas of the picture that are of highest relevance. Use
the slider to change the opacity of the heat map. Because the heat map is a square, the test image is
compressed into a square. This might cause the image to look distorted, but it will reliably show you
the areas that the algorithm identified as relevant.
If you are not satisfied with the result, use the information in this topic to refine the model: “Refining
a model” on page 75. Otherwise, the model is ready to be used in production.

Related concepts:
“Working with the user interface” on page 51
The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the
action bar, the data area, and the notification center.
“Understanding metrics” on page 79
PowerAI Vision provides several metrics to help you measure how effectively your model has been
trained.
Related information:

Vision Service API documentation

Scenario: Detecting segmented objects in images
In this fictional scenario, you want to create a deep learning model to detect segmented objects, such as a
bicycle with a rider standing in front of it. To accomplish this, you will import a COCO data set and train
a Detectron model.

To create a deep learning model to detect segmented objects, you will perform the following steps:
1. “Import images and create a data set”
2. “Training a model” on page 93
3. “Deploying a trained model” on page 94

Import images and create a data set

First, create a data set and add images to it.
1. Log in to PowerAI Vision.
2. Click Data Sets in the navigation bar to open the Data Sets page. Create a new data set and give it a

name.
3. From the COCO download site, click 2017 Train images to download the train2017.zip file.
4. Create a new file that contains just the images that you want from train2017 by running a command

such as the following:
ls train2017 | grep jpg | head -20000 >/tmp/flist

5. From the COCO download site, click 2017 Train/Val annotations to download the
annotations_trainval2017.zip file.

6. From annotations_trainval2017.zip, extract the annotations/instances_train2017.json file, which is
the COCO annotation file for object detection.

7. Add annotations/instances_train2017.json to the file of images that you created in step 4 and
compress them into a zip file.

8. From your new data set, click Import file and select the zip file you just created.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload
completes. You can navigate to different pages within PowerAI Vision during the upload.

92 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html
http://cocodataset.org/#download
http://cocodataset.org/#download

Training a model

Because the images are already labeled, you can now train your deep learning model. Training a model
uses one GPU:
1. From the Data set page, click Train.
2. Fill out the fields on the Train Data set page. Select Object Detection and Segmentation (Detectron).
3. Click Train.
4. (Optional - Only supported when training for object detection.) Stop the training process by clicking Stop

training > Keep Model > Continue.
You can wait for the entire training model process complete, but you can optionally stop the training
process when the lines in the training graph start to flatten out. This is because improvements in
quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine
the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with
Detectron), because larger iteration counts and training times have been demonstrated to improve
accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can
still being improved even when the accuracy of identifying the object location stopped improving.

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have
enough information. The same is true if the accuracy of the training graph fails to rise or the errors in
the graph do not decrease at the end of the training process. For example, a model with high accuracy
might be able to discover all instances of different race cars, but might have trouble differentiating
between specific race cars or those that have different colors. In this situation, add more images or
video frames to the data set, label them, then try the training again.

Figure 13. Model training graph

Using PowerAI Vision 93

Deploying a trained model

To deploy the trained model, follow these steps. Each deployed Detectron model takes one GPU:
1. Click Models from the menu.
2. Select the model you created in the previous section and click Deploy.
3. Specify a name for the model, and click Deploy. The Deployed Models page is displayed, and the

model is deployed when the status column displays Ready.
4. Double-click the deployed model to get the API endpoint and test other images against the model.

For information about using the API see Vision Service API documentation.

Next steps

You can continue to refine the data set as much as you want. When you are satisfied with the data set,
you can train the model again. This time when you train the model, you might want to train the model
for a longer time to improve the overall accuracy of the model. The loss lines in the training model graph
should converge to a stable flat line. The lower the loss lines are in the training graph the better. After the
training completes, you can deploy the model again. You can double-click the deployed model to get the
API endpoint and test other images or images against the model.

94 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://public.dhe.ibm.com/systems/power/docs/powerai/powerai-vision-api.html

Administering PowerAI Vision

Use this information to administer PowerAI Vision, such as stopping, starting, and determining the status
of the pods.

Start or stop PowerAI Vision

There are several situations when you might need to stop and start PowerAI Vision. For example, when
upgrading or performing maintenance on the product or on the system, when troubleshooting a problem,
and so on. Use these commands to start or stop PowerAI Vision, as appropriate:
powerai-vision-stop.sh
powerai-vision-start.sh

Determine the status of PowerAI Vision pods

When troubleshooting a problem with PowerAI Vision, you might need to check the status of the Docker
pods that are part of PowerAI Vision. For example, if the product does not start, if it is returning errors,
or if actions are not completing. Run kubectl get pods to see the status. For example:

$ /opt/powerai-vision/bin/kubectl get pods
NAME READY STATUS RESTARTS AGE
powerai-vision-mongodb-764f99fcf6-l2nzd 1/1 Running 0 12h
powerai-vision-portal-76fbc7db68-7rr47 1/1 Running 0 12h
powerai-vision-postgres-55c6f7fcf6-42fbt 1/1 Running 0 12h
powerai-vision-taskanaly-55bfb587d4-cvzln 1/1 Running 0 12h
powerai-vision-ui-845d8c8d8-bmfw7 1/1 Running 0 12h
powerai-vision-video-nginx-8474f7c44c-qmxm4 1/1 Running 0 12h
powerai-vision-video-portal-5b76558784-8mb8d 1/1 Running 0 12h
powerai-vision-video-rabmq-5d5d786f9f-nz7pn 1/1 Running 0 12h
powerai-vision-video-redis-59c557b69-hf8pg 1/1 Running 0 12h
powerai-vision-video-test-nginx-5dc6887666-l9tb8 1/1 Running 0 12h
powerai-vision-video-test-portal-54d85ff65b-945gp 1/1 Running 0 12h
powerai-vision-video-test-rabmq-6858cc749-grhgm 1/1 Running 0 12h
powerai-vision-video-test-redis-75977cdd8f-lbljb 1/1 Running 0 12h

If one or more pods is not running, try stopping and restarting PowerAI Vision.

Managing users
There are two kinds of users in PowerAI Vision: administrators, and everyone else. The way you work
with users and passwords differs, depending on how PowerAI Vision is installed.

PowerAI Vision uses Keycloak for user management and authentication. All users and passwords are
maintained by Keycloak and stored in a Postgres database. A default user name of admin with a
password of passw0rd are created at install time. You can add, remove, or modify users by using the
kubectl command.
v “Types of users”
v “PowerAI Vision installed as stand-alone” on page 96
v “PowerAI Vision installed with IBM Cloud Private” on page 97

Types of users

Non-administrator users
Users other than the administrator can only see and edit resources that they created.

© Copyright IBM Corp. 2018 95

Administrator
The administrator user (admin) can see and manage all resources in PowerAI Vision regardless of
who owns it. A default user name of admin with a password of passw0rd are created at install
time. You can add, remove, or modify users by using the kubectl command. You should be aware
of the following considerations when working with admin users:

Data sets

v The administrator can see and edit all data sets. That is, this user can add and delete
files, create labels, assign categories, duplicate, rename, and delete the data set.

v If the administrator uploads a file to a different user's data set, it is listed as being
owned by the data set owner.

v If the administrator duplicates a data set, the duplicate data set is owned by the
administrator.

Models

v The administrator can see, rename, and delete all models, including after they are
deployed.

v If the administrator trains a model, the training task and the generated model is owned
by the administrator.

v If the administrator deploys a model, the deployed model is owned by the
administrator.

PowerAI Vision installed as stand-alone

If you installed PowerAI Vision stand-alone, you can use the powerai_vision_users.sh script in the
/opt/powerai-vision/bin/ directory to create, delete, modify, and list users.

Usage
powerai_vision_users.sh [command] [--user name] [--password password]

Command
Specifies the action to take.

create
Create a user in the PowerAI Vision instance. The user argument is required for this operation.
You can set the password by one of these methods:
v Specify it with the command by using the password argument.
v Store it in the environment variable, VISION_USER_PASSWORD.

delete
Delete a user from the PowerAI Vision instance. The user argument is required for this operation.

list
List the currently created users for a specified PowerAI Vision instance.

modify
Modifies the user's password. The user argument is required for this operation. You can set the
new password by one of these methods:
v Specify it with the command by using the password argument.
v Store it in the environment variable, VISION_USER_PASSWORD.

Name
The user name on which the command is to operate on.

Password
Optionally set a user's password when creating or modfying a user.

96 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

PowerAI Vision installed with IBM Cloud Private
1. Authenticate to the cluster, so that you can run kubectl commands. For example:
v In an IBM Cloud Private 2.1.0 environment, run:

bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

v In an IBM Cloud Private 3.1.0 environment, run:
cloudctl login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

2. Note your release name. In the example below, this is aivision.
3. To manage users, run the following command:

kubectl run --rm -i --restart=Never usermgt --image=cluster-domain-name:8443/powerai-vision-usermgt:version -- action
--user newusername --password password --release release

The above command has the following variables:
v action can be one of these values: create, delete, modify, or list.
v version is the release number of the PowerAI Vision product. For example, 1.1.3.0. To find the

correct value, view the configmap. For example:

$ kubectl get cm
NAME DATA AGE
powerai-vision-v1.1.3-config 52 56d

The password argument is optional. You can set the password in one of these ways:
v The --password argument in powerai-vision-usermgt.
v The --env option for kubectl with the VISION_USER_PASSWORD environment variable. For

example, add --env="VISION_USER_PASSORD=${MY_PASS} to the kubectl run command.
Example: To create customusername with password custompassw0rd1234 on release aivision, run:

$ kubectl run --rm -i --restart=Never usermgt --image=myicpcluster.com:8443/powerai-vision-usermgt:1.1.3.0
-- create --user customusername --password custompassw0rd1234 --release aivision

Created user: customusername

Example: To list users in the PowerAI Vision 1.1.3 deployment, run:

$ kubectl run --rm -i --restart=Never usermgt --image=powerai-vision-usermgt:1.1.3.0 -- list --release v111
If you don’t see a command prompt, try pressing enter.
admin
testuser1
testuser2

Notes:

v If running in the non-default namespace, make sure to specify the --namespace option.
v The version tag on the container should match image.releaseTag in the values.yaml file.
v The argument release should match the release name you assigned when deploying the chart.
v There is not a typo with the spacing of the "--" before create. It should be --<SPACE>create<SPACE>

--user username.... This is intentional and an artifact of how the commands are passed into the
user management tool.

Installing a new SSL certificate in PowerAI Vision stand-alone
PowerAI Vision ships with a self-signed certificate that is used by default, but this can be replaced with a
certificate generated for PowerAI Vision for secure communications. If you want to use your own
certificate, follow these steps to update the PowerAI Vision configuration.
1. Shut down PowerAI Vision:

sudo /opt/powerai-vision/bin/powerai-vision-stop.sh

Administering 97

2. Edit /opt/powerai-vision/bin/config.sh and specify the following information:
v TLS_CERT_PATH - Path to your custom PEM encoded public key certificate.
v TLS_KEY_PATH - Path to the private key associated with the TLS_CERT_PATH certificate.
v INGRESS_HOSTS - The host names defined in your certificate that you wish to use to access

PowerAI Vision.
3. Start PowerAI Vision:

$ sudo /opt/powerai-vision/bin/powerai-vision-start.sh

PowerAI Vision utilities
PowerAI Vision includes these utilities for working with the product.
v “Administer”
v “Troubleshooting” on page 100
v “Cleanup and uninstall” on page 101

Administer

accept-powerai-vision-license

Usage
accept-powerai-vision-license.sh

Description
The accept-powerai-vision-license.sh utility is used to accept the product license. The
environment variable IBM_POWERAI_VISION_LICENSE_ACCEPT can be set to yes or no to
automatically accept or reject the license. Otherwise, the license is presented along with a
prompt to accept:
Press Enter to continue viewing the license agreement, or, Enter "1" to accept the agreement, "2" to decline it or "99" to go back to the previous screen, "3"
Print, "4" Read non-IBM terms.

Note: This is called by the startup script powerai_vision_start.sh the first time the
application is started to ensure that the license is accepted. If not accepted, the product
will not start.

Requirements
The user must have sudo/root permissions.

check-powerai-vision-license

Usage
check-powerai-vision-license.sh

Description
Checks whether the product license has already been accepted.
v If the license is accepted, the utility silently exits with success (0).
v If the license has not been accepted, the utility prints an error and exits with error (1).

Requirements
The user must have sudo/root permissions.

config.sh

Usage
config.sh

Description
This file can be used to specify the following configuration values for the application:

EXTERNAL_IP
An IP address for the web portal if it is different from the system host name.

98 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

TLS_CERT_PATH, TLS_KEY_PATH, INGRESS_HOSTS
Specifies custom TLS certificates to be used by the application. See “Installing a new
SSL certificate in PowerAI Vision stand-alone” on page 97 for details.

Requirements
None - not an executable.

gpu_setup.sh

Usage
gpu_setup.sh

Description
Utility that checks the availability of GPUs on the system and the Docker setup to verify
that it supports using GPUs in Docker containers. It is called by the
powerai_vision_start.sh startup script.

Requirements
The user must have sudo/root permissions.

helm.sh

Usage
helm.sh [command]

Description
A wrapper for the Kubernetes Helm utility, which works with deployment charts. The
helm.sh utility can be used to check the status of the PowerAI Vision deployment. See
“Checking application deployment” on page 43 for details. For information about the
Helm utility, see Using Helm.

Requirements
None.

kubectl.sh

Usage
kubectl.sh [command]

Description
A wrapper for the Kubernetes kubectl utility, which works with pods and deployments.
The kubectl.sh utility can be used to check the status of the PowerAI Vision deployment.
See these topics for details:
v “Checking Kubernetes services status” on page 35
v “Checking Kubernetes node status” on page 37
v “Checking application deployment” on page 43

For information about the kubectl utility, see Overview of kubectl.

Requirements
None.

load_images.sh

Usage
load_images.sh-f [<powerai-vision-images-release>.tar]

Description
Utility to load the PowerAI Vision Docker images, which are provided with the product
installation package in the <powerai-vision-images-release>.tar file. The load_images.sh
utility requires approximately 30 Gb of free space in the /var file system to extract and
load the Docker images. Images are loaded in parallel, so if there are space limitations on
the system, errors will only be output after all images have attempted to load. The docker

Administering 99

https://helm.sh/docs/using_helm/
https://kubernetes.io/docs/reference/kubectl/overview/

images command can be used to validate that all images have been loaded. See
“Checking the application Docker images in standalone installation” on page 33 for
details.

Requirements
The user must have Docker group permissions.

port.sh

Usage
port.sh

Description
A file that can be used to specify configuration values for the ports used by the
application. This is only required if there are multiple web services running on the
system.

POWERAI_VISION_EXTERNAL_HTTPS_PORT
Specifies the SSL port that the PowerAI Vision user interface will use. The default
port is 443.

Requirements
None - not an executable.

powerai_vision_start.sh

Usage
powerai_vision_start.sh [-nD]

Description
Used to start the PowerAI Vision application and required Kubernetes services. This
startup script runs some checks of system requirements that require elevated privileges,
such as GPU availability. You can optionally specify the following flags:

-n or --nocheck
Suppress checks of the system environment. For example, SELinux contexts on GPU
devices are checked and fixed if they are found to be incorrect. By default, checks are
run and any issues found are fixed.

-D or --debug
Output debug information by using the -x bash flag.

Requirements
The user must have sudo/root permissions.

powerai_vision_stop.sh

Usage
powerai_vision_stop.sh

Description
Used to stop the PowerAI Vision application and required Kubernetes services.

Requirements
The user must have sudo/root permissions.

Troubleshooting

collect_logs.sh

Usage
collect_logs.sh

Description
Utility for collecting system logs and information, and PowerAI Vision application logs

100 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

and information. The utility creates a single tar.gz file with the logs and configuration
files that can be provided to IBM support to investigate issues.

Requirements
The user must have sudo/root permissions.

Cleanup and uninstall

purge_data

Usage
purge_data.sh

Description
Remove log and runtime data used by the PowerAI Vision application. This does not
remove the data sets and models created by application users. This data is in
<install_dir>/volume, and must be removed manually.

Requirements
The user must have the required file system permissions.

purge_images

Usage
purge_image.sh <release_tag>

Description
All PowerAI Vision Docker images matching the tag will be removed from the Docker
repository. This script can be used to clean up images from a priorPowerAI Vision
installation after an upgrade, or to remove PowerAI Vision images when uninstalling the
product.

For example, to remove Docker images for the 1.1.3.0 release from the Docker repository,
run this command:
purge_images 1.1.3.0

You can use the docker images command to see what containers are in your Docker
repository that are be associated with previous releases and can be purged.

Requirements
The user must have Docker group permissions.

Administering 101

102 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

PowerAI Vision Inference Server

With a PowerAI Vision Inference server, you can quickly and easily deploy multiple trained models to a
single server. These models are portable and can be used by many users and on different systems. This
allows you to make trained models available to others, such as customers or collaborators.
v “Hardware requirements”
v “Software requirements” on page 104
v “Installing” on page 104
v “Deploying a trained model” on page 104
v “Deployment output” on page 105
v “Inference” on page 106
v “Inference output” on page 107
v “Stopping a deployed model” on page 108
v “Decrypting a trained model” on page 108

Hardware requirements

Hardware requirements

v For deployment, the amount of memory required depends on the type of model you want to deploy.
To determine how large a deployed GoogLeNet, Faster R-CNN, Tiny Yolo v2, or Detectron model is,
run nvidia-smi from the host after deployment. Find the corresponding PID that correlates to the
model you deployed and look at the Memory Usage.
Example:
$ nvidia-smi
Tue Feb 26 09:12:59 2019
+---+
| NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P100-SXM2... On | 00000002:01:00.0 Off | 0 |
| N/A 36C P0 39W / 300W | 1853MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P100-SXM2... On | 00000003:01:00.0 Off | 0 |
| N/A 38C P0 42W / 300W | 4179MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P100-SXM2... On | 0000000A:01:00.0 Off | 0 |
| N/A 63C P0 243W / 300W | 3351MiB / 16280MiB | 73% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla P100-SXM2... On | 0000000B:01:00.0 Off | 0 |
| N/A 35C P0 31W / 300W | 10MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 15735 C /opt/miniconda2/bin/python 958MiB |
| 0 16225 C python 885MiB |
| 1 39541 C python 2253MiB |
| 1 86043 C /opt/miniconda2/bin/python 958MiB |
| 1 86299 C /opt/miniconda2/bin/python 958MiB |
| 2 103835 C /opt/miniconda2/bin/python 3341MiB |
+---+

© Copyright IBM Corp. 2018 103

v A custom model based on TensorFlow will take all remaining memory on a GPU. However, you can
deploy it to a GPU that has at least 2GB memory.

Software requirements

Linux

v Red Hat Enterprise Linux (RHEL) 7.6 (little endian).
v Ubuntu 18.04 or later.

NVIDIA CUDA

v x86 - 9.2 or later drivers. For information, see the NVIDIA CUDA Toolkit website.
v ppc64le - 10.1 or later drivers. For information, see the NVIDIA CUDA Toolkit website.

Docker

v Docker must be installed. The recommended version is 1.13.1 or later. Version 1.13.1 is installed
with RHEL 7.6.

v Ubuntu - Docker CE or EE 18.06.01
v When running Docker, nvidia-docker 2 is supported. For RHEL 7.6, see Using nvidia-docker

2.0 with RHEL 7.

Unzip The unzip package is required on the system to deploy the zipped models.

Installing
1. Download the install files by using one of these methods:
v Download the product tar file from the IBM Passport Advantage website.
v Download the product tar.gz file from Advanced Administration System (AAS). This system is also

called Entitled Software Support (ESS).
2. Run the appropriate commands to install the product, depending on the platform you are installing

on. There are RPM files for installation on RHEL (x86 and ppc64le) and DEB files for installation on
Ubuntu (amd64 and ppc64le).

RHEL rpm -i file_name.rpm

Ubuntu
dpkg -i file_name.deb

Load the product Docker images with the appropriate container's tar file. The file name has this
format: powerai-vision-inference-<arch>-containers-<release>.tar, where <arch> is x86 or ppc64le,
and <release> is the product version being installed.
/opt/powerai-vision/dnn-deploy-service/bin/load_images.sh -f <tar_file>

PowerAI Vision Inference Server will be installed at /opt/powerai-vision/dnn-deploy-service.

Deploying a trained model

The following types of models can be deployed:
v Object detection using Faster R-CNN (default), tiny-YOLO V2, Detectron, custom TensorFlow models,

and Keras models.
v Image classification using GoogLeNet (default) and custom TensorFlow models.

To deploy a model, run this command:
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh

Note: The first time you run this command, you are prompted to accept the license agreement.

Usage:

104 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.ibm.com/linuxonpower/2018/09/19/using-nvidia-docker-2-0-rhel-7/
https://developer.ibm.com/linuxonpower/2018/09/19/using-nvidia-docker-2-0-rhel-7/
https://www.ibm.com/software/passportadvantage/pao_customer.html

./deploy_zip_model.sh -m <model-name> -p <port> -g <gpu> -t <time-limit> zipped_model_file

model-name
The docker container name for the deployed model.

port The port to deploy the model to.

gpu The GPU to deploy the model to. If specified as -1, the model will be deployed to a CPU.

Note: Detectron models cannot be deployed to a CPU.

time-limit
(Optional) Specify the time out limit for model deployment in seconds. The default value is 180
seconds.

zipped_model_file
The full path and file name of the trained model that was exported from PowerAI Vision. It can
be an image classification model or an object detection model, but must be in zip format.

Examples:
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh --model dog --port 6001 --gpu 1 ./dog_classification.zip
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh --m car -p 6002 -g -1 /home/user/mydata/car.zip
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m coco -p 6001 -g 1 /home/ycheng/model/new_models/cdb-coco-30k_model.zip

Deployment output

There are several different results you might see when you deploy a model. For example:

Success
If a model is deployed successfully, it reports back with the message "Successfully deployed
model."
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m coco -p 6001 -g 1 /home/ycheng/model/new_models/cdb-coco-30k_model.zip

Successfully deployed model.

Deployed in 22 seconds

Failure
If the deployment fails, it reports back with log information from the docker container, including
error messages regarding the failure. Some possible error examples follow. See “Troubleshooting
known issues - PowerAI Vision Inference Server” on page 124 for details about dealing with
errors.
v Ran out of GPU memory

root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 7018 -g 1 /root/inference-only-testing/cars_detectron_model.zip
Deployment failed. Here are logs before the failure:

File "/opt/detectron/detectron/core/test_engine.py", line 331, in initialize_model_from_cfg
model, weights_file, gpu_id=gpu_id,

File "/opt/detectron/detectron/utils/net.py", line 112, in initialize_gpu_from_weights_file
src_blobs[src_name].astype(np.float32, copy=False))

File "/usr/local/lib/python2.7/dist-packages/caffe2/python/workspace.py", line 321, in FeedBlob
return C.feed_blob(name, arr, StringifyProto(device_option))

RuntimeError: [enforce fail at context_gpu.cu:359] error == cudaSuccess. 2 vs 0. Error at: /tmp/pytorch/caffe2/core/context_gpu.cu:359: out of memory
root : INFO Callback message: {’msgId’: ’6ef7e371-1209-47b3-94c3-940640324ac8’, ’msgReturnCode’: ’ErrModelLoading’, ’msgDesc’: ’Traceback (most recent call last):\n File "/opt/DNN/dnn/deploy_process.py", line 165, in modelLoading\n self.caller.onModelLoading()\n File "/opt/DNN/dnn_impl/cod_detectron/deploy_service.py", line 64, in onModelLoading\n self.model = infer_engine.initialize_model_from_cfg(self.deploy)\n File "/opt/detectron/detectron/core/test_engine.py", line 331, in initialize_model_from_cfg\n model, weights_file, gpu_id=gpu_id,\n File "/opt/detectron/detectron/utils/net.py", line 112, in initialize_gpu_from_weights_file\n src_blobs[src_name].astype(np.float32, copy=False))\n File "/usr/local/lib/python2.7/dist-packages/caffe2/python/workspace.py", line 321, in FeedBlob\n return C.feed_blob(name, arr, StringifyProto(device_option))\nRuntimeError: [enforce fail at context_gpu.cu:359] error == cudaSuccess. 2 vs 0. Error at: /tmp/pytorch/caffe2/core/context_gpu.cu:359: out of memory \n’, ’msgState’: ’aborted’, ’msgTime’: 1551801403956}
root : INFO Wait 5s for messaging completed...
[root@dldev4 ~]#

v Invalid GPU ID specified
[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 7018 -g 5 /root/inference-only-testing/cars_detectron_model.zip

Deployment failed. Here are logs before the failure:
Failed building wheel for nvidia-ml-py
Running setup.py clean for nvidia-ml-py

Failed to build nvidia-ml-py
Installing collected packages: nvidia-ml-py

PowerAI Vision Inference Server 105

Running setup.py install for nvidia-ml-py: started
Running setup.py install for nvidia-ml-py: finished with status ’done’

Successfully installed nvidia-ml-py-375.53.1
You are using pip version 8.1.1, however version 19.0.3 is available.
You should consider upgrading via the ’pip install --upgrade pip’ command.
Cannot find gpu 5.
[root@dldev4 ~]#

v Processing was interrupted:
/usr/bin/docker-current: Error response from daemon: Conflict. The container name "/decrypt" is already in use by container ec0932898a65b82ed47504c8baa2507046d7bb0fcf460405d6201d3088bc9731.
You have to remove (or rename) that container to be able to reuse that name.

To fix the problem, run these commands:
docker stop decrypt
docker rm decrypt

v Tried to deploy a Detectron model on a CPU:
[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 7018 -g -1 /root/inference-only-testing/cars_detectron_model.zip
Deployment failed. Here are logs before the failure:

Failed building wheel for nvidia-ml-py
Running setup.py clean for nvidia-ml-py

Failed to build nvidia-ml-py
Installing collected packages: nvidia-ml-py

Running setup.py install for nvidia-ml-py: started
Running setup.py install for nvidia-ml-py: finished with status ’done’

Successfully installed nvidia-ml-py-375.53.1
You are using pip version 8.1.1, however version 19.0.3 is available.
You should consider upgrading via the ’pip install --upgrade pip’ command.
We currently do not support CPU mode for Detectron models.
[root@dldev4 ~]#

v Deployment times out:
[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -t 15 -m durga_custom_cars3 -p 7008 -g -1 /root/inference-only-testing/cars_keras-frcnn_custom_model.zip
Deployment timed out at 15 seconds

If the deployment times out, increase the time limit by using the -t option.

Inference

Inference can be done by using the deployed model with a local file or an image URL.

Optional Parameters:

confthre
Confidence threshold. Specify a value in the range [0.0,1.0], treated as a percentage. Only results
with a confidence greater than the specified threshold are returned. The smaller confidence
threshold you specify, the more results are returned. If you specify 0, many, many results will be
returned because there is no filter based on the confidence level of the model. The default value
is 0.5.

containRle
This option is only available for Detectron models. If this is true, the inference output will include
RLEs of the segments. The default value is false.

containPolygon
This option is only available for Detectron models. If it is set to true, the polygon for the
segments is included in the output. The default value is true.

GET method:

Required Parameters:

imageurl
The URL address of the image. The URL must start with http:// or https://.

106 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Example:

curl -G -d "imageurl=https://ibm.box.com/shared/static/i98xa4dfpff6jwv0lxmcu4lybr8b5kxj.jpg&confthre=0.7&containPolygon=false&containRle=true" http://localhost:5000/inference

POST method:

Required Parameters:

imagefile
The name of the image file to be used for inference.

Example:
curl -F "imagefile=@$DIR/data/bird.jpg" \

-F "confthre=0.7" \
-F "containPolygon=false" \
-F "containRle=true" \
http://localhost:5000/inference

Example 1 - Classification:
curl -F "imagefile=@/home/testdata/cocker-spaniel-dogs-puppies-1.jpg" http://localhost:6001/inference

Example 2 - Object detection:
curl -G -d "imageurl=https://assets.imgix.net/examples/couple.jpg" http://localhost:6002/inference

Example 3 – Object detection of a tiny YOLO model with confidence threshold:
curl -F "imagefile=@/home/testdata/Chihuahua.jpeg" –F "confthre=0.8" http://localhost:6001/inference

Note: Confidence threshold works for Faster R-CNN, Detectron, and tiny YOLO object detection models
and GoogLeNet image classification models.

Example 4 - Object detection of a Detectron model that contains polygon segments instead of RLEs
(default setting)
curl -F "imagefile=@/home/ycheng/model/new_models/pics/cars.jpg" -F "confthre=0.98" http://localhost:6001/inference

Example 5 - Object detection of a Detectron model that contains RLE segments instead of a polygon:
curl -F "imagefile=@/home/ycheng/model/new_models/pics/cars.jpg" -F "confthre=0.98" -F "containRle=true" -F "containPolygon=false" http://localhost:6001/inference

Inference output

The PowerAI Vision Inference Server can deploy both image classification models and object detection
models.

Image classification model
A successful classification will report something similar to the following:

Example 1 output - success
{"classified": {"Cocker Spaniel": 0.93}, "result": "success"}

The image has been classified as a Cocker Spaniel with a confidence of .93.

Example 1 output - fail
{"result": "fail"}

The image could not be classified. This might happen if the image could not be loaded, for
example.

Object detection model
A successful detection will report something similar to the following:

PowerAI Vision Inference Server 107

Example 2 output - success
{"classified": [{"confidence": 0.94, "ymax": 335, "label": "car", "xmax": 576,

"xmin": 424, "ymin": 160, "attr": []}], "result": "success"}

The cars in the image are located at the specified coordinates. The confidence of each label is
given.

Example 2 output - success
{"classified": [], "result": "success"}

Object detection was carried out successfully, but there was nothing to be labeled that has
confidence above the threshold.

Example 2 output - fail
{"result": "fail"}

Objects could not be detected. This might happen if the image could not be loaded, for example.

Example 4 output - success

The output includes a rectangle and polygon.
{"classified": [{"confidence": 0.9874554872512817, "ymax": 244, "label": "car", "xmax": 391, "xmin": 291, "ymin": 166, "polygons": [[[325, 170], [322, 172], [318, 172], [311, 178], [311, 181], [300, 189], [297, 189], [289, 195], [289, 232], [297, 238], [297, 240], [304, 246], [307, 246], [315, 240], [322, 240], [325, 238], [369, 238], [372, 240], [387, 240], [394, 235], [394, 198], [387, 192], [387, 189], [383, 187], [383, 184], [376, 178], [376, 175], [372, 172], [369, 172], [365, 170]]]}], "result": "success"}

Example 5 output - success

The output includes a rectangle and rle.
{"classified": [{"confidence": 0.9874554872512817, "ymax": 244, "rle": "RXb3h0e;e0^O2nDcNl:b1O1O0O2O00000O100O1O1N2O1N2O1N2O1O001O10O01O1000O010000O100000000O1000000000O10001O00010O001O001O1O1O1O100O1O1O1O2N1O2N2N100N2O2M2N4Kmm2", "label": "car", "xmax": 391, "xmin": 291, "ymin": 166}], "result": "success"}

Stopping a deployed model

To stop the deployed model, run the following command. When you stop the deployed model, the GPU
memory is made available.
docker stop <model-name>
docker rm <model-name>

Example 1:
docker stop dog; docker rm dog

Example 2:
docker stop car; docker rm car

Decrypting a trained model

You can decrypt a model that was trained by using PowerAI Vision by running decrypt_zip_model.

Usage: /opt/powerai-vision/dnn-deploy-service/bin/decrypt_zip_model.sh [-h|--help] | [[-o
string] model_file.zip]

output
Specifies the file name for the output decrypted model.

model_file
A trained model exported from PowerAI Vision.

Example:

/opt/powerai-vision/dnn-deploy-service/bin/decrypt_zip_model.sh -o car_frcnn_decrypted.zip
car_frcnn.zip

108 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

This will generate a new zip file car_frcnn_decrypted.zip, which is not password protected.

Inference on embedded edge devices
Using edge computing for your inference models helps save processing time by removing latency issues,
ensures security, and also decreases bandwidth usage. This topic describes how to use PowerAI Vision
with embedded edge devices.
v A full end to end use case is available if you use the DeepRed FPGA by V3 Technology that takes

camera input, analyzes the video, and outputs the video with bounding-boxes on an HDMI attached
device. See the section “Inference on DeepRED” for details.

v If you want to create your own solution or have a different FPGA board, then use the information in
this section: “Inference with a custom solution.”

Inference on DeepRED

DeepRED is an embedded artificial intelligence development system that supports PowerAI Vision. It lets
you quickly deploy the trained model for testing and production.

Generate an IP core for use with DeepRED:
1. Perform customization. For DEEPRED this is not optional. If they want to use DEEPRED, they need

to change the ZC706 to DEEPRED in the configmap (both instances of it). They should not add
custom DSP_NUM, etc.

2. Perform optional customization.
a. On the PowerAI Vision host operating system, run the appropriate command.
v For a standard install:

$ /opt/powerai-vision/bin/kubectl.sh edit configmap powerai-vision-config

v For PowerAI Vision installed on IBM Cloud Private:
$ kubectl edit configmap powerai-vision-release_name-config

b. Find the row beginning EMB_COD_IMAGE in the configuration file and replace ZC706 with DEEPRED:
"EMB_COD_IMAGE": ["DEEPRED,DEEPRED,powerai-vision-dnn-edge:1.1.3.0"],

c. Save and exit.
3. Restart PowerAI Vision by running the appropriate command. The deleted pods will automatically

restart.
v For a standard install:

$ /opt/powerai-vision/bin/kubectl.sh delete pod -l app=powerai-vision

v For PowerAI Vision installed on IBM Cloud Private:
$ kubectl delete pod -l app=powerai-vision-release_name

4. Train your model.
v On the Train data set page, for Type of training, select Object detection.
v Under Advanced options, choose Optimized for speed

5. Copy the IP core file for compilation. The generated FPGA IP core is named UUID-ipcore.zip, where
UUID is the UUID of the trained model. It is stored in the following location:
v For a standard install: /opt/powerai-vision/volume/data/trained-models.
v For PowerAI Vision installed on IBM Cloud Private, it is stored in your Persistent Volume under

`<PATH_TO_VOLUME>/data/trained-models.

Inference with a custom solution

Using a custom solution requires appropriate hardware and software, as well as FPGA development
skills. You must be able to:

PowerAI Vision Inference Server 109

v Take an existing IP core and use Vivado to merge it into a custom solution. Refer to the PIE DNN
Accelerator IP Integration Guide.pdf for instructions to integrate the generated DNN IP core into your
project.

v Set up and use Vivado, Petalinux, and other software.

Environment requirements

v A chip set that can provide enough BRAM, such as Xilinx 7035 or later
v A board with PL side (not just PS side) DRAM so that it can provide sufficient bandwidth between the

FPGA and DRAM.

Follow these steps to generate an IP core for use with a custom solution. The examples included are for a
ZC706 card:
1. Perform optional customization.

By default, PowerAI Vision is configured to use the following resources on a ZC706 card. However,
you can customize these values.

DSP_NUM=700
RAM18E_NUM=800
DDR_BANDWIDTH=80000.0
DDR_DATA_WIDTH=512
FPGA_TYPE=xc7z045ffg900-2
a. On the PowerAI Vision host operating system, run the appropriate command.
v For a standard install:

$ /opt/powerai-vision/bin/kubectl.sh edit configmap powerai-vision-config

v For PowerAI Vision installed on IBM Cloud Private:
$ kubectl edit configmap powerai-vision-release_name-config

b. Find the row beginning EMB_COD_IMAGE in the configuration file and input your custom values.
For example, for a ZC706 card, replace ZC706 with the appropriate values for your
card:"EMB_COD_IMAGE": ["ZC706,ZC706,powerai-vision-dnn-edge:1.1.3.0"], as shown here:
"EMB_COD_IMAGE": ["ZC706,DSP_NUM=700:RAM18E_NUM=800:DDR_BANDWIDTH=80000.0:
DDR_DATA_WIDTH=512:FPGA_TYPE=xcvu9pl2fsgd2104e,powerai-vision-dnn-edge:1.1.3.0"],

c. Save and exit.
2. Restart PowerAI Vision by running the appropriate command. The deleted pods will automatically

restart.
v For a standard install:

$ /opt/powerai-vision/bin/kubectl.sh delete pod -l app=powerai-vision

v For PowerAI Vision installed on IBM Cloud Private:
$ kubectl delete pod -l app=powerai-vision-release_name

3. Train your model.
v On the Train data set page, for Type of training, select Object detection.
v Under Advanced options, choose Optimized for speed

4. Copy the IP core file for compilation. The generated FPGA IP core is named UUID-ipcore.zip, where
UUID is the UUID of the trained model. It is stored in the following location:
v For a standard install: /opt/powerai-vision/volume/data/trained-models.
v For PowerAI Vision installed on IBM Cloud Private, it is stored in your Persistent Volume under

`<PATH_TO_VOLUME>/data/trained-models.

110 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://ibm.box.com/s/c6synnqrtve44tgkbcsp7nhvoi48io5v
https://ibm.box.com/s/c6synnqrtve44tgkbcsp7nhvoi48io5v

Troubleshooting and contacting support

To isolate and resolve problems with your IBM products, you can use the following troubleshooting and
support information. This information contains instructions for using the problem-determination
resources that are provided with your IBM products, including PowerAI Vision.

Troubleshooting known issues - PowerAI Vision standard install
Following are some problems you might encounter when using PowerAI Vision, along with steps to fix
them.
v “The PowerAI Vision user interface does not work”
v “The PowerAI Vision user interface is not accessible” on page 112
v “Resource pages are not being populated in the user interface” on page 112
v “Unexpected / old pages displayed when accessing the user interface” on page 113
v “PowerAI Vision does not play video” on page 113
v “PowerAI Vision cannot train or deploy models after reboot” on page 113
v “Changing the port for the PowerAI Vision user interface” on page 113
v “Auto detection video does not play in Firefox browser” on page 114
v “Out of space error from load_images.sh” on page 114
v “GPUs are not available for training or inference” on page 115
v “I forgot my user name or password” on page 115
v “PowerAI Vision cannot train a model” on page 116
v “Training or deployment hangs - Kubernetes pod cleanup” on page 116
v “Training fails with error indicating "You must retrain the model."” on page 117
v “Model fails to deploy with time out message” on page 117
v “Model training and inference fails” on page 118
v “Unexpected inference result using image with EXIF Orientation” on page 118
v “Model accuracy value is unexpected” on page 118
v “Deployed models stuck in "Starting"” on page 118
v “Auto labeling of a data set returns "Auto Label Error"” on page 119
v “PowerAI Vision does not start” on page 119
v “PowerAI Vision application does not start on Ubuntu 18.04” on page 120
v “PowerAI Vision fails to start - Kubernetes connection issue” on page 121
v “PowerAI Vision startup hangs - helm issue” on page 121
v “Helm status errors when starting PowerAI Vision” on page 122
v “Uploading a large file fails” on page 123
v “Some PowerAI Vision functions don't work ” on page 123

The PowerAI Vision user interface does not work

Problem
You cannot label objects, view training charts, or create categories.

Solution
Verify that you are using a supported web browser. The following web browsers are supported:
v Google Chrome Version 60, or later

© Copyright IBM Corp. 2018 111

v Firefox Quantum 59.0, or later

The PowerAI Vision user interface is not accessible

Problem
The PowerAI Vision user interface cannot be accessed using a browser and you performed the
following checks:
v Checking Kubernetes node status indicates the following:

– The PowerAI Vision application appears to be good.
– The nginx-ingress-lb-ppc64le pod status is Running, but it is not “ready”. That is, Ready lists

0/1 instead of 1/1.

See “Checking Kubernetes node status” on page 37 for instructions.
v There appears to be no listener on the port.
v The nginx-ingress-lb-ppc64le pod log has errors indicating "Too many open files".
v The host system has a high core count, for example, 160. For example:

more /proc/cpuinfo | grep processor | wc -l
160

Solution
To allow the pod to start successfully, edit the pkg/kubernetes/ingress-controller.yaml file in the
product installation directory (default /opt/powerai-vision), and add the following line to the
"data" stanza:
worker-processes: "2"

Example
apiVersion: v1
kind: ConfigMap
metadata:

name: nginx-load-balancer-conf
namespace: kube-system

data:
proxy-body-size: ’0’
disable-access-log: "true"
use-port-in-redirects: "true"
enable-vts-status: "false"
worker-processes: "2"

The pod periodically attempts to restart, but you can force a restart using kubectl delete pod.

Example:
/opt/powerai-vision/bin/kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
coredns-76f484447b-k8fp5 1/1 Running 0 23m
nginx-ingress-lb-ppc64le-44vtl 0/1 Running 8 23m
nvidia-device-plugin-daemonset-28sks 1/1 Running 0 23m
tiller-deploy-7f65888dc8-n2lz7 1/1 Running 0 23m
/opt/powerai-vision/bin/kubectl delete pod nginx-ingress-lb-ppc64le-44vtl -n kube-system
pod "nginx-ingress-lb-ppc64le-44vtl" deleted

For full details, see this topic in the IBM Cloud Private Knowledge CenterIngress controller
reported: epoll_create() failed (24: Too many open files).

Resource pages are not being populated in the user interface

Problem
Resource pages, such as data sets and models, are not being populated. Notifications indicate that
there is an error obtaining the resource. For example, "Error obtaining data sets."

112 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/troubleshoot/ingress_fail.html
https://www.ibm.com/support/knowledgecenter/en/SSBS6K_3.1.2/troubleshoot/ingress_fail.html

Solution

Check the status of the powerai-vision-portal pod. This pod provides the data to the user
interface, and until it is ready (1/1) with a status of Running, these errors will occur. See
“Checking Kubernetes node status” on page 37 for instructions.

If the application is restarting, there is an expected delay before all services are available and
fully functioning. Otherwise, this may indicate an unexpected termination (error) of the
powerai-vision-portal pod. If that happens, follow these instructions: “Gather PowerAI Vision
logs and contact support” on page 127.

Unexpected / old pages displayed when accessing the user interface

Problem
After updating, reinstalling, or restarting PowerAI Vision, the browser presents pages that are
from the previous version or are stale.

Solution
This problem is typically caused by the browser using a cached version of the page. To solve the
problem, try one of these methods:
v Use a Firefox Private Window to access the user interface.
v Use a Chrome Incognito Window to access the user interface.
v Bypass the browser cache:

– In most Windows and Linux browsers: Hold down Ctrl and press F5.
– In Chrome and Firefox for Mac: Hold down ⌂ Cmd and ⌂ Shift and press R.

PowerAI Vision does not play video

Problem
You cannot upload a video, or after the video is uploaded the video does not play.

Solution
Verify that your video is a supported type:
v Ogg Vorbis (.ogg)
v VP8 or VP9 (.webm)
v H.264 encoded videos with MP4 format (.mp4)

If your video is not in a supported format, transcode your video by using a conversion utility.
Such utilities are available under various free and paid licenses.

PowerAI Vision cannot train or deploy models after reboot

Problem
On RHEL 7.6 systems with CUDA 10.1, the SELinux context of NVIDA GPU files is lost at boot
time. SELinux then prevents PowerAI Vision from using the GPUs for training and deployment.

Solution
Restart PowerAI Vision by running powerai_vision_stop.sh / powerai_vision_start.sh. This resets
the problematic SELinux contexts if they are incorrect, restoring the ability to access GPUs for
training and inference.

Changing the port for the PowerAI Vision user interface

Problem
By default, the PowerAI Vision user interface uses port 443, forwarded from port 80.

Solution
If you need to use either port for something else, follow these steps to change the PowerAI
Vision port.

Troubleshooting and contacting support 113

1. If PowerAI Vision is running, use the following command to stop it:
$ /opt/powerai-vision/bin/powerai_vision_stop.sh

2. Change /opt/powerai-vision/bin/port.sh.
v Update this line with the appropriate port:

POWERAI_VISION_EXTERNAL_HTTP_PORT=80.
v Update this line with the appropriate port:

POWERAI_VISION_EXTERNAL_HTTPS_PORT=443.
3. Make sure the new port is open in your operating system's firewall by running the following

command:
$ /opt/powerai-vision/sbin/firewall.sh

4. Restart PowerAI Vision by running the following command:
$ /opt/powerai-vision/bin/powerai_vision_start.sh

Auto detection video does not play in Firefox browser

Problem
The Firefox browser reports “The media playback was aborted due to a corruption problem or
because the media used features your browser did not support”. This happens in versions of the
Firefox browser that do not support YUV444 chroma subsampling, which prevents the video from
being played successfully.

Solution
Use a version of Firefox that supports YUV444 chroma subsampling or use a different browser
(such as Chrome) that does support it.

Out of space error from load_images.sh

Problem
When installing the product, the load_images.sh script is used to load the PowerAI Vision
Docker images. The script might terminate with errors, the most frequent issue being insufficient
disk space for loading the Docker images.

For example, the /var/lib/docker file system can run out of space, resulting in a message
indicating that an image was not fully loaded. The following output shows that the Docker image
powerai-vision-dnn was not able to be fully loaded because of insufficient file system space:

root@kottos-vm1:~# df --output -BG "/var/lib/docker/"
Filesystem Type Inodes IUsed IFree IUse% 1G-blocks Used Avail Use% File Mounted on
/dev/vda2 ext4 8208384 595697 7612687 8% 124G 81G 37G 70% /var/lib/docker/ /
root@kottos-vm1:~#

**
892d6f64ce41: Loading layer [==>] 21.26MB/21.26MB
785af1d0c551: Loading layer [==>] 1.692MB/1.692MB
dc102f4a3565: Loading layer [==>] 747.9MB/747.9MB
aac4b03de02a: Loading layer [==>] 344.1MB/344.1MB
d0ea7f5f6aab: Loading layer [==>] 2.689MB/2.689MB
62d3d10c6cc2: Loading layer [==>] 9.291MB/9.291MB
240c4d86e5c7: Loading layer [==>] 778MB/778MB
889cd0648a86: Loading layer [==>] 2.775MB/2.775MB
56bbb2f20054: Loading layer [==>] 3.584kB/3.584kB
3d3c7acb72e2: Loading layer [================================>] 2.117GB/3.242GB
Error processing tar file(exit status 1): write /usr/bin/grops: no space left on device

[FAIL] Some images failed to load
[FAIL] Failure info:

Loading the PowerAI Vision docker images...
root@kottos-vm1:~#

114 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

This situation can also be noted in the output from /opt/powerai-vision/bin/kubectl get pods.
This command is described in “Checking the application and environment” on page 33, which
shows images that could not be loaded with a status of ErrImagePull or ImagePullBackOff.

Solution
The file system space for /var/lib/docker needs to be increased, even if the file system is not
completely full. There might still be space in the file system where /var/lib/docker is located,
but insufficient space for the PowerAI Vision Docker images. There are operating system
mechanisms to do this, including moving or mounting /var/lib/docker to a file system partition
with more space.

After the error situation has been addressed by increasing or cleaning up disk space on the
/var/lib/docker/ file system, re-run the load_images.sh script to continue loading the images.
No clean up of the previous run of load_images.sh is required.

I forgot my user name or password

Problem
You forgot your user name or password and cannot log in to the PowerAI Vision GUI.

Solution
PowerAI Vision uses an internally managed users account database. To change your user name or
password, see “Logging in to PowerAI Vision” on page 49.

GPUs are not available for training or inference

Problem

If PowerAI Vision cannot perform training or inference operations, check the following:
v Verify that the nvidia smi output shows all relevant information about the GPU devices. For

example, the following output shows Unknown error messages indicating that the GPUs are not
in the proper state:
Mon Dec 3 15:43:07 2018
+---+
| NVIDIA-SMI 410.72 Driver Version: 410.72 CUDA Version: 10.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla V100-SXM2... Off | 00000004:04:00.0 Off | 0 |
| N/A 31C P0 49W / 300W | Unknown Error | 0% Default |
+-------------------------------+----------------------+----------------------+
...

v Verify that the nvidia-persistenced service is enabled and running (active) by using the
command sudo systemctl status nvidia-persistenced:
systemctl status nvidia-persistenced
* nvidia-persistenced.service - NVIDIA Persistence Daemon

Loaded: loaded (/etc/systemd/system/nvidia-persistenced.service; enabled; vendor preset: disabled)
Active: active (running) since Tue 2018-11-13 08:41:22 CST; 2 weeks 6 days ago

...

Solution

v If the GPU status indicates errors and the nvidia-persistenced service is not enabled and
active, enable and start the service:
1. Enable the service:

sudo systemctl enable nvidia-persistenced

2. Start the service:
sudo systemctl start nvidia-persistenced

Troubleshooting and contacting support 115

http://blaze.aus.stglabs.ibm.com/kc20TR-cur/SSRU69_1.1.2/base/vision_chk_gpu_status.html

v If the nvidia-persistenced service is enabled but the Persistence-M state still shows Off, verify
that the udev rules have been set correctly if the system is a RHEL server. See this topic for
details: “NVIDIA Components: IBM POWER9 specific udev rules (Red Hat only)” on page 20.

PowerAI Vision cannot train a model

Problem
The model training process might fail if your system does not have enough GPU resources.

Solution

v If you are training a data set for image classification, verify that at least two image categories
are defined, and that each category has a minimum of five images.

v If you are training a data set for object detection, verify that at least one object label is used.
You must also verify that each object is labeled in a minimum of five images.

v Ensure that enough GPUs are available. GPUs are assigned as follows:
– Each active training job takes one GPU.
– Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group

is listed as '-', which indicates that this model uses a full GPU and does not share the
resource with any other deployed models.

– Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI
Vision uses packing to deploy the models. That is, the model is deployed to the GPU that
has the most models deployed on it, if there is sufficient memory available on the GPU. The
GPU group can be used to determine which deployed models share a GPU resource. To free
up a GPU, all deployed models in a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.

If a training job appears to be hanging, it might be waiting for another training job to
complete, or there might not be a GPU available to run it.
To determine how many GPUs are available on the system, view the GPU usage on the Models
or Trained Models page in the user interface.
If all the systems GPUs are in use, you can either delete the group of deployed models that are
using a GPU (making the models unavailable for inference) or you can stop model that is
being trained. The deployed models that share a GPU have the same group number. To free up
a GPU, all deployed models in one group must be deleted.
– To delete a deployed model, click Deployed Models. Next, select the model that you want

to delete and click Delete. The trained model is not deleted from PowerAI Vision. You can
redeploy the model later when more GPUs are available.

– To stop a training model that is running, click Models. Next, select the model that has a
status of Training in Progress and click Stop Training.

Training or deployment hangs - Kubernetes pod cleanup

Problem
You submit a job for training or deployment, but it never completes. When doing training or
deployments, sometimes some pods that are running previous jobs are not terminated correctly
by the Kubernetes services. In turn, they hold GPUs so no new training or deployment jobs can
complete. They will be in the Scheduled state forever.

To verify that this is the problem, run kubectl get pods and review the output. The last column
shows the age of the pod. If it is older than a few minutes, use the information in the Solution
section to solve the problem.

Example:

116 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

kubectl get pods
powerai-vision-infer-ic-06767722-47df-4ec1-bd58-91299255f6hxxzk 1/1 Running 0 22m
powerai-vision-infer-ic-35884119-87b6-4d1e-a263-8fb645f0addqd2z 1/1 Running 0 22m
powerai-vision-infer-ic-7e03c8f3-908a-4b52-b5d1-6d2befec69ggqw5 1/1 Running 0 5h
powerai-vision-infer-od-c1c16515-5955-4ec2-8f23-bd21d394128b6k4 1/1 Running 0 3h

Solution
Follow these steps to manually delete the deployments that are hanging.
1. Determine the running deployments and look for those that have been running longer than a

few minutes:
kubectl get deployments

2. Delete the deployments that were identified as hanging in the previous step.
kubectl delete deployment deployment_id

3. You can now try the training or deploy again, assuming there are available GPUs.

Note: When a deployment is manually deleted, vision-service might try to recreate it when it is
restarted. The only way to force Kubernetes to permanently delete it is to remove the failing
model from PowerAI Vision.

Training fails with error indicating "You must retrain the model."

Problem
Very long label names can result in training failures. Label or class names used in the data set are
longer than 64 characters, and/or international characters that have multi-byte representation are
used.

Solution
Label and class names should be 64 characters or less. Longer label names are supported but
using international characters or very long label names can cause an internal metadata error,
resulting in a training failure.

Model fails to deploy with time out message

Problem
When using deploy_zip_model.sh to deploy a PowerAI Vision model, the action fails with a
message of "Deployment timed out at 180 seconds".

Solution
This can occur if the GPU specified for the deployment no longer has available memory to
deploy the model. Check the GPU usage of the GPU using the nvidia-smi command as described
in this topic: “Checking system GPU status” on page 47. For example, if the model failed to
deploy to GPU 1, use nvidia-smi -i 1 to check the usage of GPU 0 and stop or delete some of
the models currently deployed to the GPU if there are limited memory resources. The following
output demonstrates a situation where the GPU does not have sufficient memory to deploy the
model:
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m 8193_cars_custom_COD_model -p 7005 -g 1 /root/inference-only-testing/new_models/cars-tf-cod.zip
chcon: can’t apply partial context to unlabeled file '/root/inference-only-testing/new_models/cars-tf-cod.zip'
WARNING: This might cause model file permission issue inside container
chcon: can’t apply partial context to unlabeled file '/tmp/aivision_inference'
WARNING: This might cause permission issue inside container

Deployment timed out at 180 seconds
[root@dldev4 ~]# nvidia-smi -i 1
Tue Apr 30 14:13:39 2019
+---+
| NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|

Troubleshooting and contacting support 117

| 1 Tesla P100-PCIE... Off | 00000000:81:00.0 Off | 0 |
| N/A 32C P0 31W / 250W | 15919MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 1 13691 C python 2133MiB |
| 1 17165 C python 2065MiB |
| 1 17955 C python 958MiB |
| 1 18832 C python 742MiB |
| 1 19545 C python 10009MiB |
+---+

Model training and inference fails

Problem
The NVIDIA GPU device is not accessible by the PowerAI Vision Docker containers. To confirm
this, run kubectl logs -f _powerai-vision-portal-ID_ and then check pod_powerai-vision-
portal-ID_powerai-vision-portal.log for an error indicating error == cudaSuccess (30 vs. 0):
F0731 20:34:05.334903 35 common.cpp:159] Check failed: error == cudaSuccess (30 vs. 0) unknown error
*** Check failure stack trace: ***
/opt/py-faster-rcnn/FRCNN/bin/train_frcnn.sh: line 24: 35 Aborted (core dumped) _train_frcnn.sh

Solution
Use sudo to alter SELINUX permissions for all of the NVIDIA devices so they are accessible via
the PowerAI Vision Docker containers.
sudo chcon -t container_file_t /dev/nvidia*

Unexpected inference result using image with EXIF Orientation

Problem
An unexpected result is received when using the REST API to perform an inference operation
when using an image with EXIF Orientation specified. The PowerAI Vision deployed model does
not use the EXIF Orientation to perform rotations of the provided image, which may cause an
unexpected inference result.

Solution
Rotate the image prior to providing to the REST API for inference. For example, the Linux tool
exiftran can be used to rotate the image. Then, pass the rotated image to the REST API for
inference.

Model accuracy value is unexpected

Problem
A trained model has an unexpected value for accuracy, such as 0%, 100%, or “Unknown”. This
happens when there is not enough data for training to work properly.

Solution
Ensure that there are enough images in the data set for each category or object label. For details,
see “Data set considerations” on page 56.

Deployed models stuck in "Starting"

Problem
PowerAI Vision models remain in "Starting" state and do not become available for inference
operations.

Solution
Delete and redeploy the models. One possible cause is that the PowerAI Vision models were

118 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

deployed in a prior version of the product that is not compatible with the currently installed
version. For example, this can happen after upgrading.

Auto labeling of a data set returns "Auto Label Error"

Problem
Auto labeling cannot be performed on a data set that does not have unlabeled images, unless
some of the images were previously labeled by the auto label function.

Solution
Ensure that the Objects section of the data set side bar shows there are objects that are
“Unlabeled”. If there are none, that is, if “Unlabeled (0)” is displayed in the side bar, add new
images that are unlabeled or remove labels from some images, then run auto label again.

PowerAI Vision does not start

Problem
When you enter the URL for PowerAI Vision from a supported web browser, nothing is
displayed. You see a 404 error or Connection Refused message.

Solution

Complete the following steps to solve this problem:
1. Verify that IP version 4 (IPv4) port forwarding is enabled by running the /sbin/sysctl

net.ipv4.conf.all.forwarding command and verifying that the value for
net.ipv4.conf.all.forwarding is set to 1.
If IPv4 port forwarding is not enabled, run the /sbin/sysctl -w net.ipv4.conf.all.forwarding=1
command. For more information about port forwarding with Docker, see UCP requires IPv4
IP Forwarding in the Docker success center.

2. If IPv4 port forwarding is enabled and the docker0 interface is a member of the trusted zone,
check the Helm chart status by running this script:
sudo /opt/powerai-vision/bin/helm.sh status vision

In the script output, verify that the PowerAI Vision components are available by locating the
Deployment section and identifying that the AVAILABLE column has a value of 1 for each
component. The following is an example of the output from the helm.sh status vision script
that shows all components are available:

RESOURCES:
==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
powerai-vision-mongodb 1 1 1 1 4d
powerai-vision-portal 1 1 1 1 4d
powerai-vision-postgres 1 1 1 1 4d
powerai-vision-taskanaly 1 1 1 1 4d
powerai-vision-ui 1 1 1 1 4d
powerai-vision-video-nginx 1 1 1 1 4d
powerai-vision-video-portal 1 1 1 1 4d
powerai-vision-video-rabmq 1 1 1 1 4d
powerai-vision-video-redis 1 1 1 1 4d
powerai-vision-video-test-nginx 1 1 1 1 4d
powerai-vision-video-test-portal 1 1 1 1 4d
powerai-vision-video-test-rabmq 1 1 1 1 4d
powerai-vision-video-test-redis 1 1 1 1 4d

If you recently started PowerAI Vision and some components are not available, wait a few
minutes for these components to become available. If any components remain unavailable,
gather the logs and contact IBM Support, as described in this topic: “Gather PowerAI Vision
logs and contact support” on page 127.

3. If the docker0 interface is a member of a trusted zone and all PowerAI Vision components are
available, verify that the firewall is configured to allow communication through port 443
(used to connect to PowerAI Vision) by running this command:

Troubleshooting and contacting support 119

https://success.docker.com/article/ipv4-forwarding
https://success.docker.com/article/ipv4-forwarding

sudo firewall-cmd --permanent --zone=public --add-port=443/tcp

PowerAI Vision application does not start on Ubuntu 18.04

Problem
When the PowerAI Vision application starts, pods are crashing and it takes a long time to start
up. Example kubectl get pods output:
./kubectl get pods
NAME READY STATUS RESTARTS AGE
powerai-vision-dnn-microservices-ded7344d-12eb-45dd-b851-bjczm2 0/1 Running 0 6m15s
powerai-vision-fpga-device-plugin-bwdkr 1/1 Running 0 6m12s
powerai-vision-keycloak-9d8677bdd-v8hkt 0/1 Init:0/1 0 6m12s
powerai-vision-mongodb-59b864854-vhj9j 1/1 Running 0 6m12s
powerai-vision-portal-744c8b8c55-6mz4g 0/1 Init:1/2 0 6m12s
powerai-vision-postgres-f6fc6d9c9-rz5tt 1/1 Running 0 6m12s
powerai-vision-taskanaly-7456d64c69-ttk2j 1/1 Running 0 6m12s
powerai-vision-ui-dc876bb9f-rj8w9 0/1 CrashLoopBackOff 5 6m12s
powerai-vision-video-nginx-9b4f7f848-nblbt 0/1 CrashLoopBackOff 5 6m12s
powerai-vision-video-portal-748d49ff84-xq752 0/1 Init:0/1 0 6m12s
powerai-vision-video-rabmq-5cf94f96d6-fpgv5 1/1 Running 0 6m12s
powerai-vision-video-redis-6ccfddb554-66knv 1/1 Running 0 6m12s
powerai-vision-video-test-nginx-6db8cc78f5-4mdmm 0/1 CrashLoopBackOff 5 6m12s
powerai-vision-video-test-portal-7b487748f4-xmb4r 0/1 Init:0/1 0 6m11s
powerai-vision-video-test-rabmq-b5559b848-dpl6c 1/1 Running 0 6m11s
powerai-vision-video-test-redis-5c9d7f469b-dvq8f 1/1 Running 0 6m11s

The powerai-vision-ui pod indicates errors with nginx:
/opt/powerai-vision/bin/kubectl.sh logs -f powerai-vision-ui-85494f77f7-4sp8z
2019/03/14 20:46:27 [emerg] 9#9: host not found in upstream "powerai-vision-portal" in /etc/nginx/conf.d/default.conf:18
nginx: [emerg] host not found in upstream "powerai-vision-portal" in /etc/nginx/conf.d/default.conf:18
server {

listen 80;
... (more nginx config)

And the Kubernetes coredns pod shows errors. For instructions to check the status, see
“Checking Kubernetes services status” on page 35. Example of the coredns log file:
2019-03-03T23:46:37.291137031Z .:53
2019-03-03T23:46:37.291202267Z 2019-03-03T23:46:37.29Z [INFO] CoreDNS-1.2.6
2019-03-03T23:46:37.291212052Z 2019-03-03T23:46:37.29Z [INFO] linux/ppc64le, go1.11.2, 756749c
2019-03-03T23:46:37.29122109Z CoreDNS-1.2.6
2019-03-03T23:46:37.29122966Z linux/ppc64le, go1.11.2, 756749c
2019-03-03T23:46:37.291238056Z [INFO] plugin/reload: Running configuration MD5 = 2e2180a5eeb3ebf92a5100ab081a6381
2019-03-03T23:46:37.291246756Z [FATAL] plugin/loop: Forwarding loop detected in "." zone. Exiting. See https://coredns.io/plugins/loop#troubleshooting. Probe query: "HINFO 129123060296396902.4044894662317403292.".

Solution
Ubuntu 18.04 name services do not always create a valid /etc/resolv.conf with a name server
specified that provides resolution of hosts to IP addresses, as required by PowerAI Vision. Try
one of the following workarounds:
v Create a usable resolvconf package:

1. Install the Ubuntu resolvconf package.
2. Edit the new /etc/resolvconf/resolv.conf.d/head and add at least one valid nameserver

x.y.z.a entry.
3. Restart the resolvconf by running service.sudo service resolvconf restart.

v Create a link from /etc/resolv.conf to the correct system resolv.conf. Depending on the
service, this could be /run/resolvconf/resolv.conf, /run/systemd/resolvconf/resolv.conf,
/etc/resolvconf/run/resolv.conf or /usr/lib/systemd/resolv.conf.

120 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

PowerAI Vision fails to start - Kubernetes connection issue

Problem
If the host system does not have a default route defined in the networking configuration, the
Kubernetes cluster will fail to start with connection issues. For example:

$ sudo /opt/powerai-vision/bin/powerai_vision_start.sh
INFO: Setting up GPU...
[...]
Checking kubernetes cluster status...
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #1:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #2:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #3:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #4:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #5:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #6:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #7:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #8:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #9:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #10:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #11:
ERROR: Retry timeout. Error in starting kubernetes cluster, please check /opt/powerai-vision/log/kubernetes for logs.

Solution
Define a default route in the networking configuration.
v For instructions to do this on Ubuntu, refer to the IP addressing section in the Ubuntu

Network Configuration. Search for the steps to configure and verify the default gateway.
v For instructions to do this on Red Hat Enterprise Linux (RHEL), refer to 2.2.4 Static Routes and

the Default Gateway in the Red Hat Customer Portal.

PowerAI Vision startup hangs - helm issue

Problem
PowerAI Vision startup hangs with the message "Unable to start helm within 30 seconds - trying
again." For example:

Troubleshooting and contacting support 121

https://help.ubuntu.com/lts/serverguide/network-configuration.html.en#ip-addressing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-networkscripts-static-routes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/s1-networkscripts-static-routes

root> sudo /opt/powerai-vision/bin/powerai_vision_start.sh
Checking ports usage...
Checking ports completed, no confict port usage detected.
[INFO] Setting up the GPU...

Init cuda devices...
Devices init completed!
Persistence mode is already Enabled for GPU 00000004:04:00.0.
Persistence mode is already Enabled for GPU 00000004:05:00.0.
Persistence mode is already Enabled for GPU 00000035:03:00.0.
Persistence mode is already Enabled for GPU 00000035:04:00.0.
All done.

[INFO] Starting kubernetes...
Checking kubernetes cluster status...
Probing cluster status #1: NotReady
Probing cluster status #2: NotReady
Probing cluster status #3: NotReady
Probing cluster status #4: Ready
Booting up ingress controller...
Initializing helm...
[WARN] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
[WARN] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
[WARN] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
[WARN] Unable to start helm within 30 seconds - trying again. If this continues, contact support.

Solution
To solve this problem, you must follow these steps exactly as written:
1. Cancel PowerAI Vision startup by pressing ctrl+c.
2. Stop PowerAI Vision by running this command:

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

3. Modify the RHEL settings as follows:
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service

4. Start PowerAI Vision again:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

If the above commands do not fix the startup issue, check for a cgroup leak that can impact
Docker. A Kubernetes/Docker issue can cause this situation, and after fixing the firewall issue the
start up can still fail if there was cgroup leakage.

One symptom of this situation is that the df command is slow to respond. To check for excessive
cgroup mounts, run the mount command:
$ mount | grep cgroup | wc -l

If the cgroup count is in thousands, reboot the system to clear up the cgroups.

Helm status errors when starting PowerAI Vision

Problem
There is an issue in some RHEL releases that causes the startup of PowerAI Vision to fail after
restarting the host system. When this is the problem, the system tries to initialize Helm at 30
second intervals but never succeeds. Therefore, the startup never succeeds. You can verify this
status by running the Helm status vision command:
/opt/powerai-vision/bin/helm status vision

Result:

122 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Error: getting deployed release "vision": Get https://10.10.0.1:443/api/v1/namespaces/kube-system/configmaps[...]: dial tcp 10.10.0.1:443: getsockopt: no route to host

Solution
To solve this problem, you must follow these steps exactly as written:
1. Cancel PowerAI Vision startup by pressing ctrl+c.
2. Stop PowerAI Vision by running this command:

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

3. Modify the RHEL settings as follows:
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service

4. Start PowerAI Vision again:
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

If the above commands do not fix the startup issue, check for a cgroup leak that can impact
Docker. A Kubernetes/Docker issue can cause this situation, and after fixing the firewall issue the
start up can still fail if there was cgroup leakage.

One symptom of this situation is that the df command is slow to respond. To check for excessive
cgroup mounts, run the mount command:
$ mount | grep cgroup | wc -l

If the cgroup count is in thousands, reboot the system to clear up the cgroups.

Uploading a large file fails

When uploading files into a data set, there is a 24 GB size limit per upload session. This limit applies to a
single .zip file or a set of files. When you upload a large file that is under 24 GB, you might see the
upload start (showing a progress bar) but then you get an error message in the user interface. This error
happens due to a Nginx timeout, where the file upload is taking longer than the defined 5 minute Nginx
timeout.

Despite the notification error, the large file has been uploaded. Refreshing the page will show the
uploaded files in the data set.

Some PowerAI Vision functions don't work

Problem
PowerAI Vision seems to start correctly, but some functions, like automatic labeling or automatic
frame capture, do not function.

To verify that this is the problem, run /opt/powerai-vision/bin/kubectl.sh get pods and verify
that one or more pods are in state CrashLoopBackOff. For example:

kubectl get pods
NAME READY STATUS RESTARTS AGE
...
powerai-vision-video-rabmq-5d5d786f9f-7jfk9 0/1 CrashLoopBackOff 2 54s

Solution
PowerAI Vision requires IPv6. Enable IPv6 on the system.

Troubleshooting and contacting support 123

Troubleshooting known issues - PowerAI Vision Inference Server
Following are some problems you might encounter when using PowerAI Vision, along with steps to fix
them.
v “Problems installing an rpm on a RHEL system with Docker CE”
v “When deploying a model, you get an error that the /decrypt container name is already in use”
v “Unexpected inference result using image with EXIF Orientation”
v “Model fails to deploy with time out message”

Problems installing an rpm on a RHEL system with Docker CE

Problem
When installing an rpm on a RHEL system with Docker CE, you see this error: Error: Failed
dependencies: docker is needed by <file_name.rpm>. For example:

Solution
To install an rpm on a system with Docker CE instead of Docker, force install the rpm by the
following command
rpm --nodeps -i file_name.rpm

When deploying a model, you get an error that the /decrypt container name is
already in use

Problem
When deploying a model, you get a docker error such as the following:

docker: Error response from daemon: Conflict. The container name "/decrypt" is already in use by container "b9deb17c4651162aaf609cb97835098b69f6f6f9ac5c5558041a0ff52e8d0777".
You have to remove (or rename) that container to be able to reuse that name. See ’docker run --help’.

This error can occur if a previous model deployment/decryption was terminated or failed
unexpectedly during the deployment/decryption process.

Solution
Remove the Docker image by running the following commands:
docker stop decrypt; docker rm decrypt

Unexpected inference result using image with EXIF Orientation

Problem
An unexpected result is received when using the REST API to perform an inference operation
when using an image with EXIF Orientation specified. The PowerAI Vision deployed model does
not use the EXIF Orientation to perform rotations of the provided image, which may cause an
unexpected inference result.

Solution
Rotate the image prior to providing to the REST API for inference. For example, the Linux tool
exiftran can be used to rotate the image. Then, pass the rotated image to the REST API for
inference.

Model fails to deploy with time out message

Problem
When using deploy_zip_model.sh to deploy a PowerAI Vision model, the action fails with a
message “Deployment timed out at 180 seconds”.

Solution
This can occur if the GPU specified for the deployment no longer has available memory to

124 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

deploy the model. Check the GPU usage by using the nvidia-smi command as described in this
topic: “Checking system GPU status” on page 47. For example, if the model failed to deploy to
GPU 1, run nvidia-smi -i 1 to check the usage of GPU 0. If there are limited memory resources,
stop and delete some of the models currently deployed to the GPU by running these commands:
docker stop <model-name>
docker rm <model-name>

The following output demonstrates a situation where the GPU does not have sufficient memory
to deploy the model:
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m 8193_cars_custom_COD_model -p 7005 -g 1 /root/inference-only-testing/new_models/cars-tf-cod.zip
chcon: can’t apply partial context to unlabeled file '/root/inference-only-testing/new_models/cars-tf-cod.zip'
WARNING: This might cause model file permission issue inside container
chcon: can’t apply partial context to unlabeled file '/tmp/aivision_inference'
WARNING: This might cause permission issue inside container

Deployment timed out at 180 seconds
[root@dldev4 ~]# nvidia-smi -i 1
Tue Apr 30 14:13:39 2019
+---+
| NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 1 Tesla P100-PCIE... Off | 00000000:81:00.0 Off | 0 |
| N/A 32C P0 31W / 250W | 15919MiB / 16280MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 1 13691 C python 2133MiB |
| 1 17165 C python 2065MiB |
| 1 17955 C python 958MiB |
| 1 18832 C python 742MiB |
| 1 19545 C python 10009MiB |
+---+

Troubleshooting known issues - IBM Cloud Private install
Following are some problems you might encounter when using PowerAI Vision in an IBM Cloud Private
(ICP) environment, along with steps to fix them.

PowerAI Vision pods do not start - ICP installation

Problem
In an IBM Cloud Private installation, checking the status of the PowerAI Vision pods shows
many in ContainerCreating and Init state.

Example:
kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
powerai-vision-icp-keycloak-7bff8db8b-8thfm 0/1 Init:0/1 0 7m 10.1.44.236 10.10.10.2 <none>
powerai-vision-icp-mongodb-5599969957-pgwvc 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-portal-6dcc65cfd9-n4fnr 0/1 Init:0/2 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-postgres-6ffc46dd59-hj6sq 0/1 Running 0 7m 10.1.44.247 10.10.10.2 <none>
powerai-vision-icp-taskanaly-97dffb698-p5qcg 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-ui-5d64c856d6-mtzh9 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-nginx-77945f4cc9-9wjjq 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-portal-774c5b799d-sgntt 0/1 Init:0/1 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-rabmq-65bfbc5799-c5knd 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-redis-fb67bb445-5r7s2 1/1 Running 0 7m 10.1.44.240 10.10.10.2 <none>

Troubleshooting and contacting support 125

powerai-vision-icp-video-test-nginx-8675b6fd4d-rsf4b 0/1 Running 0 7m 10.1.44.239 10.10.10.2 <none>
powerai-vision-icp-video-test-portal-ccbc4c4f8-dxhns 0/1 Init:0/1 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-test-rabmq-7bb766c575-2l4qm 0/1 ContainerCreating 0 7m <none> 10.10.10.2 <none>
powerai-vision-icp-video-test-redis-d5ffd75f7-8jjcr 1/1 Running 0 7m 10.1.44.23

The pod describe output for the pods that are not starting will also show events indicating
problems with the underlying storage. For example:
Volumes:

run-mount:
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: powerai-vision-icp-data-pvc
ReadOnly: false

default-token-hz9c4:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-hz9c4
Optional: false

QoS Class: BestEffort
Node-Selectors: beta.kubernetes.io/arch=ppc64le
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning FailedMount 24m (x28 over 103m) kubelet, 10.10.10.4 Unable to mount volumes for pod "powerai-vision-icp-elasticsearch-5fbb6d9b65-br78d_default(dbe0edd0-8375-11e9-b64b-14630800178b)": timeout expired waiting for volumes to attach or mount for pod "default"/"powerai-vision-icp-elasticsearch-5fbb6d9b65-br78d". list of unmounted volumes=[run-mount]. list of unattached volumes=[run-mount default-token-hz9c4]
Warning FailedMount 5m42s (x59 over 103m) kubelet, 10.10.10.4 (combined from similar events): MountVolume.SetUp failed for volume "v114-sravan" : mount failed: exit status 32

Mounting command: systemd-run
Mounting arguments: --description=Kubernetes transient mount for /var/lib/kubelet/pods/dbe0edd0-8375-11e9-b64b-14630800178b/volumes/kubernetes.io~nfs/icp --scope -- mount -t nfs 10.10.10.1:/data/nfs/v114-sravan /var/lib/kubelet/pods/dbe0edd0-8375-11e9-b64b-14630800178b/volumes/kubernetes.io~nfs/icp
Output: Running scope as unit run-9236.scope.
mount.nfs: mounting 10.10.10.1:/data/nfs/icp failed, reason given by server: No such file or directory

Solution
The problem is likely that the persistent volume claim is not being bound to a valid persistent
volume.
1. Log in to the ICP environment. See “Checking the application status in an ICP installation” on

page 34 for instructions.
2. Check the status of the storage and ensure that the state is “Bound:” by following the steps in

this topic: “Checking Kubernetes storage status” on page 41.
3. If the storage is not correctly bound, fix the problem then redeploy the application.

PowerAI Vision Training and Deployed Model pods cannot access GPUs

Problem
When trying to train or deploy a model, the operation fails. Logs gathered may indicate issues
with GPU initialization, noted by non-zero cudaSuccess values. For example:
root : INFO F0510 14:51:21.103844 23 common.cpp:159] Check failed: error == cudaSuccess (3 vs. 0) initialization error
root : INFO *** Check failure stack trace: ***
root : INFO APPMSG:{’status’: ’aborted’, ’type’: ’status_msg’}

Solution
Ensure that GPUs are visible in the ICP dashboard. If they are, then ensure that the
nvidia-container-runtime-hook is not installed on the system:
rpm -qa | grep nvidia-container-runtime-hook
nvidia-container-runtime-hook-1.4.0-2.ppc64le

The ICP environment provides a GPU plug-in container, and the nvidia-container-runtime-hook
must be uninstalled.

After uninstalling the nvidia-container-runtime-hook, restart the ICP services on the node by
following these instructions: .

126 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Important: Before stopping the kubelet and docker service on the node, mark the node as
unschedulable. Run the following command:
kubectl cordon 9.111.255.122

Note: Marking the node as unschedulable disables scheduling new pods on the node.
1. Shut down the system by stopping the kubelet on the target node by running the following

command:
sudo systemctl stop kubelet

Allow the kubelet services time to quiesce - this can take up to one minute.
2. Stop the docker containers or the docker runtime by running the following command:

sudo systemctl stop docker

3. Restart the Docker by running the following command:
sudo systemctl start docker

4. Restart the kubelet and ensure that it is running successfully by running the following
command:
sudo systemctl start kubelet
sudo systemctl status kubelet

5. If the kubelet service is unsuccessful, view the logs for the kubelet by running the following
command:
sudo journalctl -e -u kubelet

6. Exit maintenance by running the following command:
kubectl uncordon 9.111.255.122

Gather PowerAI Vision logs and contact support
Sometimes you cannot solve a problem by troubleshooting the symptoms. In such cases, you must collect
diagnostic data and contact support.

Collecting and inspecting data before you open a problem management record (PMR) can help you to
answer the following questions:
v Do the symptoms match any known problems? If so, has a fix or workaround been published?
v Can the problem be identified and resolved without a code fix?
v When does the problem occur?

To gather logs for support, follow these steps:
1. Collect logs from the PowerAI Vision application.
v Standalone installation:

– Collect the vision-service log: The most useful logs to debug an issue with the application are
the vision-service logs. Run this command to collect the logs from the vision-service pod, and
output them to a log file that includes a timestamp in the file name for reference:
sudo /opt/powerai-vision/bin/kubectl logs `sudo /opt/powerai-vision/bin/kubectl get pods -o custom-columns=NAME:.metadata.name | grep vision-service` > ./vision-service-`date %d%m%Y-%H%M%S`.log

– Collect all logs:
Run the sudo /opt/powerai-vision/bin/collect_logs.sh script. The directory where the log file is
saved is listed in the INFO: FFDC Collected section, as shown in the following example:

Troubleshooting and contacting support 127

INFO: Collecting PowerAI Vision Application Logs...
INFO: Collecting PowerAI Infrastructure Logs...
INFO: Collecting configuration information...
INFO: Collecting System Details...
INFO: Collecting Platform Logs...
INFO: FFDC Collected below:
-rw-r--r--. 1 root root 95477342 May 22 18:15 /var/log/powerai-vision/powerai-vision.logs.18_15_11_May_22_2019.tgz

The log files to provide are generated here: /tmp/kubectl_logs*.
v IBM Cloud Private installation:

a. Enable the kubectl command. For instructions, see this topic in the IBM Cloud Private
Knowledge Center: Accessing your IBM® Cloud private cluster by using the kubectl CLI.

b. Collect all logs from the PowerAI Vision pods using the <release_name> specified when
installing/deploying:
kubectl get pods > /tmp/kubectl_pod_status.txt
for i in $(kubectl get pods -o name | grep <release_name>); do

kubectl logs $i > /tmp/kubectl_logs_$i.txt
kubectl describe pods $i > /tmp/kubectl_describe_pods_$i.txt

done
kubectl describe deploy > /tmp/kubectl_deploy.txt
kubectl describe configmap > /tmp/kubectl_cm.txt

The log files to provide are generated here: /tmp/kubectl_logs*.
c. Collect the vision-service log: The most useful logs to debug an issue with the application are

the vision-service logs. Run this command to collect the logs from the vision-service pod, and
output them to a log file that includes a timestamp in the file name for reference:
sudo /opt/powerai-vision/bin/kubectl logs `sudo /opt/powerai-vision/bin/kubectl get pods -o custom-columns=NAME:.metadata.name | grep vision-service` > ./vision-service-`date %d%m%Y-%H%M%S`.log

2. Optionally, you can obtain the logs for a single pod of the application.
a. Use the kubectl get pods command to view the running pods for the application. See “kubectl.sh

get pods” on page 37. For example:

$ /opt/powerai-vision/bin/kubectl.sh get pods
NAME READY STATUS RESTARTS AGE
powerai-vision-cod-infer-33f53f4e-b6d4-4476-bb19-c16c0e4c0sbtv6 1/1 Running 0 3d1h
powerai-vision-cod-infer-b4d1e503-2f43-4652-9679-650b3ae1b4nkhp 1/1 Running 0 34h
powerai-vision-dnn-infer-f5d2182a-2aae-496c-9688-3d1e7e3977pxr9 1/1 Running 0 3d1h
powerai-vision-fpga-device-plugin-bg69p 1/1 Running 0 3d4h
powerai-vision-keycloak-7df657794b-6v4pb 1/1 Running 0 3d4h
powerai-vision-mongodb-6cdc4b654b-c7g99 1/1 Running 0 3d4h
powerai-vision-portal-7fb5d5d66-6tk45 1/1 Running 0 3d4h
powerai-vision-postgres-54d6dbdcf4-zp27c 1/1 Running 0 3d4h
powerai-vision-taskanaly-54bf4f658f-b2hzw 1/1 Running 0 3d4h
powerai-vision-ui-85494f77f7-9wg68 1/1 Running 0 3d4h
powerai-vision-video-nginx-84f4dd84f6-k4tf2 1/1 Running 0 3d4h
powerai-vision-video-portal-59678d77fb-f4qxv 1/1 Running 0 3d4h
powerai-vision-video-rabmq-bb8f588c6-k9spc 1/1 Running 0 3d4h
powerai-vision-video-redis-5dcf7f4b74-q6v86 1/1 Running 0 3d4h
powerai-vision-video-test-nginx-7fb6ff6dd9-b7vzl 1/1 Running 0 3d4h
powerai-vision-video-test-portal-5988b6d66-vpvvk 1/1 Running 0 3d4h
powerai-vision-video-test-rabmq-7c55648476-d7l54 1/1 Running 0 3d4h
powerai-vision-video-test-redis-f64c589f8-rkzf7 1/1 Running 0 3d4h

b. Run the following command, where <pod-name> is obtained from the kubectl.sh get pods
command:
kubectl.sh logs <pod-name> > <outputfile>

For example, using the above output, to collect logs in the file vision-service.log, run the
command:
$ kubectl.sh logs powerai-vision-service-5588ffdffc-cnq8h > vision-service.log

3. Submit the problem to IBM Support in one of the following ways:

128 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

https://www.ibm.com/support/knowledgecenter/en/SSBS6K_2.1.0.3/manage_cluster/cfc_cli.html

v Online through the IBM Support Portal: http://www.ibm.com/software/support/: You can open,
update, and view all of your service requests from the Service Request portlet on the Service
Request web page.

v By phone: For the phone number to call in your region, see the Directory of worldwide contacts
web page: http://www.ibm.com/planetwide/.

Getting fixes from Fix Central
You can use Fix Central to find the fixes that are recommended by IBM Support for various products,
including PowerAI Vision. With Fix Central, you can search, select, order, and download fixes for your
system with a choice of delivery options. A PowerAI Vision product fix might be available to resolve
your problem.

To find and install fixes:
1. Obtain the tools that are required to get the fix. If it is not installed, obtain your product update

installer. You can download the installer from Fix Central: http://www.ibm.com/support/fixcentral.
This site provides download, installation, and configuration instructions for the update installer.

Note: For more information about how to obtain software fixes, from the Fix Central page, click
Getting started with Fix Central, then click the Software tab.

2. Under Find product, type “PowerAI Vision” in the Product selector field.
3. Select PowerAI Vision. For Installed version, select All. For Platform, select the appropriate platform

or select All, then click Continue.
4. Identify and select the fix that is required, then click Continue.
5. Download the fix. When you download the file, ensure that the name of the maintenance file is not

changed, either intentionally or by the web browser or download utility.
6. Stop PowerAI Vision by using this script:

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

7. Install the RPM that was downloaded by running this command:
sudo yum install ./<fixpack-rpmfile>.rpm

8. Log in as root or with sudo privileges, then load the images provided in the TAR file that was
downloaded by running this script:
sudo /opt/powerai-vision/bin/load_images.sh ./<fixpack-tarfile>.tar

9. Start PowerAI Vision by running the following script. You must read and accept the license agreement
that is displayed before you can use PowerAI Vision.
sudo /opt/powerai-vision/bin/powerai_vision_start.sh

Contacting IBM Support
IBM Support provides assistance with product defects, answers FAQs, and helps users resolve problems
with the product.

After trying to find your answer or solution by using other self-help options such as technotes, you can
contact IBM Support. Before contacting IBM Support, your company or organization must have an active
IBM software maintenance agreement (SWMA), and you must be authorized to submit problems to IBM.
For information about the types of available software support, see the Support portfolio topic in the
“Software Support Handbook”.

To determine what versions of the product are supported, refer to the Software lifecycle page.

To contact IBM Support about a problem:

Troubleshooting and contacting support 129

http://www.ibm.com/software/support/
http://www.ibm.com/planetwide/
http://www.ibm.com/support/fixcentral
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/offerings.html
https://www.ibm.com/support/home/pages/lifecycle/

1. Define the problem, gather background information, and determine the severity of the problem. For
software support information, see the Getting IBM support topic in the Software Support Handbook.

2. Gather diagnostic information.
3. Submit the problem to IBM Support in one of the following ways:
v Using IBM Support Assistant (ISA):
v Online through the IBM Support Portal: You can open, update, and view all of your service

requests on the Service Request page.
v By phone: For the phone number to call in your region, see the Directory of worldwide contacts

web page.

If the problem that you submit is for a software defect or for missing or inaccurate documentation, IBM
Support creates an Authorized Program Analysis Report (APAR). The APAR describes the problem in
detail. Whenever possible, IBM Support provides a workaround that you can implement until the APAR
is resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support website daily, so
that other users who experience the same problem can benefit from the same resolution.

130 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html
http://www.ibm.com/software/support/
http://www.ibm.com/planetwide/

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2018 131

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

132 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

http://www.ibm.com/legal/us/en/copytrade.shtml

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 133

134 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

IBM PowerAI Vision 1.1.3 Release Notes®

Requirements

You must have POWER8® S822LC (8335-GTB) or POWER9 AC922 with at least one NVIDIA NVLink
capable GPU to run IBM PowerAI Vision. For more information about specific hardware and software
requirements, see the “Planning for PowerAI Vision” on page 13 topic.

Installing

You can install PowerAI Vision stand-alone or PowerAI Vision with IBM Cloud Private. For more
information, see the “Installing, upgrading, and uninstalling PowerAI Vision” on page 19 topic.

Limitations

The following are the limitations for IBM PowerAI Vision 1.1.3:
v If you import a .zip file into an existing data set, the .zip file cannot contain a directory structure.
v PowerAI Vision uses an entire GPU when you are training a dataset. Multiple GoogleNet or Faster

R-CNN models can be deployed to a single GPU. Other types of models take an entire GPU when
deployed.
The number of active GPU tasks (model training and deployment) that you can run, at the same time,
depends on the number of GPUs on your Power System server. You must verify that there are enough
available GPUs on the system for the desired workload. The number of available GPUs is displayed on
the user interface.

v You cannot install PowerAI Vision stand-alone on the same system that already has IBM Data Science
Experience (DSX), IBM Watson Studio Local, IBM Watson Machine Learning Accelerator, IBM Cloud
Private, or any other Kubernetes or Spectrum Conductor based applications installed.

v You must uninstall the technology preview version of PowerAI Vision before you can install PowerAI
Vision 1.1.3. For more information, see the “Uninstalling PowerAI Vision stand-alone” on page 31
topic.

© Copyright IBM Corp. 2018 135

136 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

© Copyright IBM Corp. 2018 137

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

138 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries..

Notices 139

http://www.ibm.com/legal/us/en/copytrade.shtml

140 IBM PowerAI Vision Version 1.1.3: PowerAI Vision Guide

IBM®

Printed in USA

	Contents
	About this document
	Highlighting
	ISO 9000

	IBM PowerAI Vision overview
	Use cases
	What's new
	IBM PowerAI Vision Trial

	PowerAI Vision concepts
	Planning for PowerAI Vision
	License Management in IBM License Metric Tool
	Installing, upgrading, and uninstalling PowerAI Vision
	Prerequisites for installing PowerAI Vision
	Installing PowerAI Vision stand-alone
	Installing PowerAI Vision with IBM Cloud Private
	Upgrading PowerAI Vision
	Uninstalling PowerAI Vision stand-alone

	Checking the application and environment
	Checking the application Docker images in standalone installation
	Checking the application status in an ICP installation
	Checking Kubernetes services status
	Checking Kubernetes node status
	Checking Kubernetes storage status
	Checking application deployment
	Checking system GPU status

	Logging in to PowerAI Vision
	Working with the user interface
	Training and working with models
	Creating and working with data sets
	Data set considerations
	Importing images with COCO annotations

	Labeling objects
	Training a model
	Working with custom models
	Preparing a model that will be used to train data sets in PowerAI Vision
	Preparing a model that will be deployed in PowerAI Vision

	Base models included with PowerAI Vision

	Deploying a trained model
	PowerAI Vision REST APIs
	Testing a model
	Refining a model
	Automatically labeling objects
	Automatically labeling objects in a data set
	Automatically labeling videos

	Augmenting the data set
	Augmentation settings

	Importing and exporting PowerAI Vision information
	Understanding metrics

	Using PowerAI Vision
	Scenario: Detecting objects in images
	Scenario: Detecting objects in a video
	Scenario: Classifying images
	Scenario: Detecting segmented objects in images

	Administering PowerAI Vision
	Managing users
	Installing a new SSL certificate in PowerAI Vision stand-alone
	PowerAI Vision utilities

	PowerAI Vision Inference Server
	Inference on embedded edge devices

	Troubleshooting and contacting support
	Troubleshooting known issues - PowerAI Vision standard install
	Troubleshooting known issues - PowerAI Vision Inference Server
	Troubleshooting known issues - IBM Cloud Private install
	Gather PowerAI Vision logs and contact support
	Getting fixes from Fix Central
	Contacting IBM Support

	Notices
	Trademarks
	Terms and conditions for product documentation

	Notices
	Trademarks

