IBM PowerAl Vision

Version 1.1.3

PowerAl Vision Guide

IBM PowerAl Vision

Version 1.1.3

PowerAl Vision Guide

Note

Before using this information and the product it supports, read the information in "Notices" on page 137.

This edition applies to IBM PowerAI Vision Version 1.1.3 and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

About this document .	• V • v • v
IBM PowerAl Vision overviewUse cases	1 . 2 . 7 . 8
PowerAl Vision concepts	11
Planning for PowerAl Vision	13
License Management in IBM License Metric Tool	17
Installing, upgrading, and uninstalling	10
PowerAl Vision	19
Prerequisites for installing PowerAI Vision	. 19
Installing PowerAI Vision stand-alone	. 23
Installing PowerAI Vision with IBM Cloud Private	27
Upgrading PowerAI Vision	. 29
Uninstalling PowerAI Vision stand-alone	. 31
Checking the application and	
environment	33
Checking the application Docker images in	
standalone installation	. 33
Checking the application status in an ICP	
installation	. 34
Checking Kubernetes services status	. 35
Checking Kubernetes node status	. 37
Checking Kubernetes storage status	. 41
Checking application deployment	. 43
Checking system GPU status	. 47
Logging in to PowerAl Vision	49
Working with the user interface	51
Training and working with models	55
Creating and working with data sets	. 55
Data set considerations	. 56
Importing images with COCO annotations	. 58
Labeling objects	. 58

Training a model	. 62 . 65
Base models included with PowerAI Vision .	. 73
Deploying a trained model	. 73
PowerAI Vision REST APIs	. 74
Testing a model	. 74
Refining a model	. 75
Automatically labeling objects	. 75
Augmenting the data set	. 77
Importing and exporting PowerAI Vision	
information	. 78
Understanding metrics	. 79
	• • • •
Using PowerAl Vision	. 83
Scenario: Detecting objects in images	. 83
Scenario: Detecting objects in a video	86
Scenario: Classifying images	. 00
Scenario: Detecting segmented objects in images	. 91
Scenario. Detecting segmented objects in images .	. 92
Administering PowerAl Vision	95
Managing users	. 00
	. 93
Installing a new SSL certificate in PowerAl Vision	
at a state of the	07
stand-alone	. 97
stand-alone	. 97 . 98
stand-alone	. 97 . 98
stand-alone	. 97 . 98 103
stand-alone	. 97 . 98 103 . 109
stand-alone	. 97 . 98 103 . 109
stand-alone	. 97 . 98 103 . 109
stand-alone	. 97 . 98 103 . 109 111
stand-alone	. 97 . 98 103 . 109 111
stand-alone	. 97 . 98 103 . 109 111 . 111
stand-alone	. 97 . 98 103 . 109 111 . 111
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 125 . 127
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 125 . 127 . 129
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 125 . 129 . 129 . 129
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 125 . 129 . 129
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 127 . 129 . 129 131
stand-alone	. 97 . 98 103 . 109 111 . 111 . 124 . 125 127 . 129 . 129 . 129 131 . 132
stand-alone PowerAl Vision utilities PowerAl Vision Inference Server Inference on embedded edge devices Inference on embedded edge devices Inference Troubleshooting and contacting support Inference Troubleshooting known issues - PowerAl Vision standard install Inference Server Troubleshooting known issues - PowerAl Vision Inference Server Inference Server Troubleshooting known issues - IBM Cloud Private install Gather PowerAl Vision logs and contact support Getting fixes from Fix Central Contacting IBM Support. Contacting IBM Support. Trademarks Terms and conditions for product documentation	. 97 . 98 103 . 109 111 . 111 . 124 . 125 127 . 129 . 129 131 . 132 133
stand-alone PowerAl Vision utilities PowerAl Vision Inference Server Inference on embedded edge devices Inference on embedded edge devices Inference Troubleshooting and contacting support Inference Troubleshooting known issues - PowerAl Vision standard install Inference Server Troubleshooting known issues - PowerAl Vision Inference Server Inference Server Troubleshooting known issues - IBM Cloud Private install Gather PowerAl Vision logs and contact support Getting fixes from Fix Central Contacting IBM Support. Inference Trademarks Inference	. 97 . 98 103 . 109 111 . 111 . 124 . 125 127 . 129 . 129 . 129 131 . 132 133
stand-alone PowerAl Vision utilities PowerAl Vision Inference Server Inference on embedded edge devices Inference on embedded edge devices Inference Troubleshooting and contacting support Inference Troubleshooting known issues - PowerAl Vision Inference Server Troubleshooting known issues - PowerAl Vision Inference Server Inference Server Import Inference Server Troubleshooting known issues - IBM Cloud Private Install Gather PowerAI Vision logs and contact support Getting fixes from Fix Central Gather PowerAI Vision logs and contact support Getting fixes from Fix Central Trademarks Import Trademarks Import Notices Import Notices Import Notices Import Import Import	. 97 . 98 103 . 109 111 . 111 . 124 . 125 127 . 129 . 129 . 129 131 . 132 133
stand-alone PowerAl Vision utilities PowerAl Vision Inference Server Inference on embedded edge devices Inference on embedded edge devices Inference Troubleshooting and contacting support Inference Troubleshooting known issues - PowerAl Vision Inference Server Troubleshooting known issues - PowerAl Vision Inference Server Inference Server Import Inference Server Troubleshooting known issues - IBM Cloud Private Install Install Import Inference Server Troubleshooting known issues - IBM Cloud Private Install Install Import Inference Server Troubleshooting known issues - IBM Cloud Private Import Inference Server Install Import Inference Server Troubleshooting known issues - IBM Cloud Private Import Inference Server Install Import Inference Server Install Import Inference Server Sather PowerAI Vision logs and contact support Import Inference Server Install Import Inference Server Install Import Inference Server Install Import Inference Server Install Import Inference Server In	. 97 . 98 103 . 109 111 . 111 . 124 . 125 . 127 . 129 . 129 . 129 . 131 . 132 . 133 137 . 139

About this document

This document provides you with information about installing and using IBM[®] PowerAI Vision to create a dataset that contains images or videos.

Highlighting

The following highlighting conventions are used in this document:

Bold	Identifies commands, subroutines, keywords, files, structures, directories, and other items whose names are predefined by the system. Bold highlighting also identifies graphical objects, such as buttons, labels, and icons that the you select.
Italics	Identifies parameters for actual names or values that you supply.
Monospace	Identifies examples of specific data values, examples of text similar to what you might see displayed, examples of portions of program code similar to what you might write as a programmer, messages from the system, or text that you must type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

IBM PowerAI Vision overview

The IBM PowerAI Vision platform, built on cognitive infrastructure, is a new generation of video/image analysis platforms. The platform offers built-in deep learning models that learn to analyze images and video streams for classification and object detection.

PowerAI Vision includes tools and interfaces for anyone with limited skills in deep learning technologies. You can use PowerAI Vision to easily label images and videos that can be used to train and validate a model. The model can then be validated and deployed in customized solutions that demand image classification and object detection.

The following are the main features of PowerAI Vision:

Streamlined model training

You can use existing models that are already trained as starting point to reduce the time required to train models and improve trained results.

Single-click model deployment

After you create a training model, you can deploy an API with one click. You can then develop applications based on the model that you deployed.

Data set management and labeling

You can manage both raw and labeled data.

Video object detection and labeling assistance

Videos that you import can be scanned for objects and the objects can be automatically labeled.

Architecture overview

The architecture of PowerAI Vision consists of hardware, resource management, deep learning computation, service management, and application service layers. Each layer is built around industry-standard technologies.

Table 1. Overview of the architecture layers

Architectural Layer	Description
Infrastructure Layer	Consists of hardware systems that support PowerAI Vision, including virtual machines (containers), a (GPUs/FPGAs), storage systems, networks, and so on.
Resource Management Layer	Coordinates and schedules all computing resources.
Deep Learning Calculation Layer	Consists of deep learning algorithms, including data processing modules, model training modules, and
Service Management Layer	Manages user projects in a graphical interface, including image preprocessing, data annotation manag management, training task management, model management, and API management.
Application Service Layer	Located on the top of the PowerAI Vision platform, it is responsible for managing all application-relat image labeling and preprocessing services, video annotation services, customized image classification customized object detection services.

Use cases

IBM PowerAI Vision includes these main use cases to demonstrate its capabilities:

Static image classification

Determine whether an image belongs to one or more classes of images based on overall image contents. For example, determining the species of dog in an image.

Uragus: 100% Accuracy

Figure 1. Detecting the overall contents of an image, based on custom training data

Static image detection

Determine and label the contents of an image based on user-defined data labels. For example, finding and labeling all dogs in an image.

Figure 2. Detecting and labeling instances of objects within an image based on custom training data

Video object detection

Determine and label the contents of an uploaded video or live video stream based on user-defined data labels. For example, finding and labeling all dogs in a video.

Figure 3. Detecting and labeling instances of objects within an image based on custom training data

Static image segmentation

Determine and label the precise location of objects in an image based on user-defined data labels and arbitrary shapes. For example, find and label the precise boundary of all leaves in an image.

Figure 4. Detecting and labeling the precise edges of an object within an image based on custom training data

Auto label an image or video

After deploying a model for object detection, you can improve its accuracy by using the Auto label function. This function improves the model's accuracy by quickly adding more data to the data set.

System-added tags are green, while manually added tags are blue.

Figure 5. Auto labeled video

Data augmentation

After deploying a model, you can improve the model by using data augmentation to add modified images to the data set, then retraining the model. *Data augmentation* is the use of filters, such as blur and rotate, to create new versions of existing images. When you use data augmentation, a new data set is created that contains all of the existing images, plus the newly generated images.

Figure 6. Augmented video

What's new

The following functions, features, and support have been added for PowerAI Vision Version 1.1.3:

PowerAI Vision Non-production edition

You can now try PowerAI Vision for one year with the Non-production edition. This edition does not allow you to export data sets or models.

GPU sharing for deployed models

The full version of PowerAI Vision now supports GPU sharing for deployed models. Deploying multiple models to a single GPU allows you to get the most out of your processing power. GPU sharing is supported only for GoogleNet and Faster R-CNN models. For more information, see "Deploying a trained model" on page 73.

Train with a Detectron model

You can now use a Detectron model to train a model. This allows you to train with objects that have been labeled as non-rectangular shapes. For details, see "Training a model" on page 62.

Transfer learning

You can use a model that was previously trained with PowerAI Vision as a *base model* to train new models. For details, see "Training a model" on page 62.

Use non-rectangular shapes when labeling

When labeling objects in a data set that will be used to train a Detectron model, you can use non-rectangular shapes. Non-rectangular labeling is supported in images, video frames, and with auto labeling. If you label objects with non-rectangular shapes and train the data set using a different model, associated rectangular bounding boxes are used. For more information, see "Labeling objects" on page 58.

Support of COCO annotations

Images with COCO annotations can be imported. Only object detection annotations are supported. For more information, see "Importing images with COCO annotations" on page 58.

Downloadable heat map

You can download the heat map that is generated when testing an image with a deployed model.

Improved performance for inference

Speeds when using the image classification (GoogLeNet) and object detection (Faster R-CNN) models for inference are improved. The improvement is especially significant for high-resolution images.

Improvements to the user interface

The following changes have been made to the user interface to improve your experience:

- **Heat map overlay**: When testing an image with a deployed model trained for classification, the heat map is layered on top of the image. You can then use a slider to set the opacity. This allows you to easily identify which areas of the image the algorithm is focusing on.
- **Confidence threshold slider**: When testing an image with a deployed model, you can use the confidence slider to eliminate object labels that have low confidence.
- **GPU information**: You can view how many GPUs the system can access and how many of those are in use on the Models or Trained Models page. See "Working with the user interface" on page 51 for details.
- Improvements to labeling
 - The working image is given more screen space.
 - New Objects panel consolidates information about labeled objects and has new settings for labeling.
 - Labels on the image are shortened to two characters; with a corresponding list in the Objects panel.

- You can use standard keyboard shortcuts to copy a shape that you traced and paste it elsewhere in the same image or to any image in the image carousel.
- You can undo and redo shape creation, edits, and deletions via standard keyboard shortcuts.
- A **Paste previous** button was added when labeling videos. Clicking **Paste previous** copies all the labels from the previous video frame and paste them into the current frame.
- New settings let you customize your labeling process. For example, you can change the outline color, hide previously drawn outlines, show or hide labels, and so on.
- Keyboard shortcuts have been added to speed up image navigation and enhance shape management.
- The list of labeled objects can be filtered.

IBM PowerAl Vision Trial

PowerAI Vision offers a trial version of the product. It has full functionality, but is not licensed for production use.

- "Installing the trial version"
- "What happens when the trial expires?" on page 9
- "Upgrading to the full version of PowerAI Vision" on page 9

Installing the trial version

Attention: You cannot install PowerAI Vision stand-alone on the same system that has the following software installed:

- IBM Data Science Experience (DSX)
- IBM Cloud Private
- Any other Kubernetes based applications
- 1. You must complete the following installation prerequisites steps before you install PowerAI Vision.
 - a. Complete all steps in the "Prerequisites for installing PowerAI Vision" on page 19 topic.
 - b. Your system must have a proper subscription and repository that provides you with updated packages. For information, see the Red Hat Subscription Manager documentation.
 - c. Turn on Extra Packages for Enterprise Linux (EPEL). For information, see the EPEL website.
- 2. Go to PowerAI Vision Trial download site. Download the .tar file and the .rpm files as instructed.
- **3.** Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

4. From the directory that contains the downloaded tar file, run the appropriate script as root or with sudo privileges:

sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

- (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script: sudo /opt/powerai-vision/sbin/firewall.sh
- 6. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values, see "Managing users" on page 95.

You must read and accept the license agreement that is displayed before you can use PowerAI Vision. It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this script:

sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the **helm.sh status vision** script, you can verify which PowerAI Vision components are available by locating the Deployment section and identifying that the AVAILABLE column has a value of 1 for each component. The following is an example of the output from the **helm.sh status vision** script that shows all components are available:

==> v1beta1/Deployment					
NAME	DESIRED	CURRENT	UP-TO-DATE	AVAILABLE	AGE
powerai-vision-mongodb	1	1	1	1	3h
powerai-vision-portal	1	1	1	1	3h
powerai-vision-postgres	1	1	1	1	3h
powerai-vision-taskanaly	1	1	1	1	3h
powerai-vision-ui	1	1	1	1	3h
powerai-vision-video-nginx	1	1	1	1	3h
powerai-vision-video-portal	1	1	1	1	3h
powerai-vision-video-rabmq	1	1	1	1	3h
powerai-vision-video-redis	1	1	1	1	3h
powerai-vision-video-test-nginx	1	1	1	1	3h
powerai-vision-video-test-portal	1	1	1	1	3h
powerai-vision-video-test-rabmq	1	1	1	1	3h
powerai-vision-video-test-redis	1	1	1	1	3h

What happens when the trial expires?

You can see how much time is left in the trial by reviewing the countdown in the header of the user interface. When the timed trial expires, the product will cease to work, including any running training, inference, import, or export operations. However, if you purchase a license, you will automatically regain access to all of your data sets, models, and so on.

If the trial expires and you want to purchase PowerAI Vision, follow the instructions in "Upgrading to the full version of PowerAI Vision."

If the trial expires and you do not decide to purchase PowerAI Vision, follow these steps:

1. Remove previously installed images by running the following script:

sudo /opt/powerai-vision/bin/purge_image.sh 1.1.3.0

Optionally remove all product data by running the following script. This will remove data sets, models, and so on:

sudo /opt/powerai-vision/bin/purge_data.sh

- 2. Remove PowerAI Vision by running the following command:
 - For RHEL:

sudo yum remove powerai-vision

• For Ubuntu:

sudo dpkg --remove powerai-vision

3. Delete the data directory by running the following command:

sudo rm -rf /opt/powerai-vision/

Upgrading to the full version of PowerAl Vision

When you are ready to purchase PowerAI Vision, you can buy a license from PowerAI Vision Marketplace. Use one of these methods to upgrade to the full version. Your data is not deleted when the product is uninstalled. You will automatically regain access to all of your data sets, models, and so on.

1. Stop the current instance of PowerAI Vision by running the following script:

sudo /opt/powerai-vision/bin/powerai_vision_stop.sh

2. Obtain and install PowerAI Vision:

Install PowerAI Vision from IBM Passport Advantage

- a. Download the product tar file from the IBM Passport Advantage website.
- b. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

```
sudo yum install ./<file_name>.rpm
```

Ubuntu

sudo dpkg -i ./<file_name>.deb

c. From the directory that contains the downloaded tar file, run the appropriate script as root or with sudo privileges:

```
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar
```

Note: The installation process can take some time to complete.

d. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai vision start.sh

Install PowerAI Vision from AAS

- a. Download the product tar.gz file from Advanced Administration System (AAS). This system is also called Entitled Software Support (ESS).
- b. Unzip and untar the tar.gz file by running this command. The install files are extracted to powerai-vision-aas-1.1.3.1/.

```
gunzip -c file_name.tar.gz | tar -xvf
```

c. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

```
sudo yum install ./<file_name>.rpm
```

Ubuntu

sudo dpkg -i ./<file_name>.deb

d. From the directory that contains the extracted tar file, run this script as root or with sudo privileges:

sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

e. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

Related concepts:

"Uninstalling PowerAI Vision stand-alone" on page 31

You must uninstall PowerAI Vision stand-alone on your system, before you can install IBM Cloud[™] Private, IBM Data Science Experience Local, or other Kubernetes-based applications.

PowerAl Vision concepts

PowerAI Vision provides an easy to use graphical user interface (GUI) that you can use to quickly create computer vision-related artificial intelligence (AI) solutions.

You must be familiar with the following concepts before you can start using PowerAI Vision:

Data set

A data set is a collection of images and videos that you uploaded to PowerAI Vision. An example of a data set would be images of cars.

Category

A category is used to classify an image. The image can belong to only a single category. An example of a category for a data set that contains cars would be car manufacturers (Toyota, Honda, Chevy, and Ford).

Object

An object is used to identify specific items in an image or specific frames in a video. You can label multiple objects in an image or a frame in a video. An example of objects in an image of cars might be wheel, headlights, and windshield.

Model A model is a set of tuned algorithms and that produces a predicted output. Models are trained based on the input that is provided by a data set to classify images or video frames, or find objects in images or video frames.

Planning for PowerAl Vision

You must meet the software and hardware requirements and understand the supported file types before you can install PowerAI Vision.

- "Hardware requirements"
- "Software requirements"
- "Networking requirements"
- "Disk space requirements" on page 14
- "Supported web browsers" on page 14
- "Image support" on page 14
- "Supported video types" on page 15
- "Limitations" on page 15

Hardware requirements

PowerAI Vision requires the following hardware:

- POWER8 S822LC (8335-GTB) or POWER9 AC922 with at least one NVIDIA NVLink capable GPU
- 128 GB of memory
- 40 GB of storage
- Ethernet network interface
- 40 GB of storage. See "Disk space requirements" on page 14 for details.
- If **Optimized for speed (tiny YOLO v2)** is selected when training the model, there are multiple options for deploying the model for testing. Deploying a model to a Xilinx FPGA requires the Xilinx Alveo U200 Accelerator card.

Software requirements

You must install the following software before you install PowerAI Vision:

Linux

- Red Hat Enterprise Linux (RHEL) 7.6 (little endian).
- Ubuntu 18.04 or later.

NVIDIA CUDA

10.1 or later drivers. For information, see the NVIDIA CUDA Toolkit website.

Docker

- Docker must be installed. The recommended version is 1.13.1 or later. Version 1.13.1 is installed with RHEL 7.6.
- Ubuntu Docker CE or EE 18.06.01

Networking requirements

Your environment must meet the following networking requirements:

- A default route must be specified on the host system.
 - For instructions to do this on Ubuntu, refer to the IP addressing section in the Ubuntu Network Configuration. Search for the steps to configure and verify the default gateway.
 - For instructions to do this on Red Hat Enterprise Linux (RHEL), refer to 2.2.4 Static Routes and the Default Gateway in the Red Hat Customer Portal.

• For RHEL, Docker 0 must be in a trusted firewall zone. If it is not in a trusted firewall zone, modify the RHEL settings as follows:

```
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service
```

• IPv4 port forwarding must be enabled.

If IPv4 port forwarding is not enabled, run the **/sbin/sysctl -w net.ipv4.conf.all.forwarding=1** command. For more information about port forwarding with Docker, see UCP requires IPv4 IP Forwarding in the Docker success center.

• IPv6 must be enabled.

Disk space requirements

PowerAI Vision has the following storage requirements for the initial product installation and for the data sets that will be managed by the product.

Standalone installation

- /var The product installation requires at least 25 Gb of space in the /var file system for the product Docker images. PowerAI Vision also generates log information in this file system.
 Recommendation: If you want to minimize the root (/) file system, make sure that /var has its own volume. The /var file system should have at least 50 Gb of space, more if additional applications are being run on the system that use this file system for log data and so on.
- /opt PowerAI Vision data sets are stored in this file system. The storage needs will vary
 depending on the data sets and the contents i.e., video data can require large amounts of
 storage.

Recommendation: If you want to minimize the root (/) file system, make sure that /opt has its own volume. The /opt file system should have at least 40 Gb of space, although this value might be more depending on your data sets.

IBM Cloud Private installation

The PowerAI Vision product will use the configured persistent storage for the deployment, the requirements are documented in Installing PowerAI Vision with IBM Cloud Private.

Supported web browsers

The following web browsers are supported:

- Google Chrome Version 60, or later
- Firefox Quantum 59.0, or later

Image support

- The following image formats are supported:
 - JPEG
 - PNG
- Images with COCO annotations are supported. For details, see "Importing images with COCO annotations" on page 58.
- The models used by PowerAI Vision have limitations on the size and resolution of images. If the original data is high resolution, then the user must consider:
 - If the images do not need fine detail for classification or object detection, they should be down-sampled to 1-2 megapixels.
 - If the images do require fine detail, they should to be divided into smaller images of 1-2 megapixels each.

- High resolution images will be scaled to a maximum of 1000 x 600 pixels.
- For image classification, images are scaled to 224 x 224 pixels.
- For object detection with Detectron, all images are scaled to 1333 x 800 pixels.
- For object detection with tiny YOLO V2, all images are scaled to 416 x 416. However, the original aspect ratio is maintained. That is, the longest edge is scaled to 416 pixels and, if necessary, black bands are added to the shorter side to make it 416 pixels.
- For object detection with FR-CNN, image segmentation, or video, anything over 1000 x 600 pixels is down-sampled so that the longest edge will fit.
- There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files. You can, however upload 24 GB of files, then upload more after the original upload completes.

Supported video types

The following video formats are supported:

Can be played in the PowerAI Vision GUI:

- Ogg Vorbis (.ogg)
- VP8 or VP9 (.webm)
- H.264 encoded videos with MP4 format (.mp4)

Supported by API only:

- Matroska (.mkv)
- Audio Video Interleave (.avi)
- Moving Picture Experts Group (.mpg or .mpeg2)

Not supported:

Videos that are encoded with the H.265 codec.

Limitations

The following are the limitations for IBM PowerAI Vision 1.1.3:

- If you import a .zip file into an existing data set, the .zip file cannot contain a directory structure.
- PowerAI Vision uses an entire GPU when you are training a dataset. Multiple GoogleNet or Faster R-CNN models can be deployed to a single GPU. Other types of models take an entire GPU when deployed.

The number of active GPU tasks (model training and deployment) that you can run, at the same time, depends on the number of GPUs on your Power[®] System server. You must verify that there are enough available GPUs on the system for the desired workload. The number of available GPUs is displayed on the user interface.

- You cannot install PowerAI Vision stand-alone on the same system that already has IBM Data Science Experience (DSX), IBM Watson Studio Local, IBM Watson Machine Learning Accelerator, IBM Cloud Private, or any other Kubernetes or Spectrum Conductor based applications installed.
- You must uninstall the technology preview version of PowerAI Vision before you can install PowerAI Vision 1.1.3. For more information, see the "Uninstalling PowerAI Vision stand-alone" on page 31 topic.

License Management in IBM License Metric Tool

The IBM PowerAI Vision product is licensed per *Virtual Server* ("Learn about software licensing - Virtual Server"). When the product is installed, a software license metric (SLM) tag file is created to track usage with the IBM License Metric Tool.

The license metric tag is an XML file, with extension .slmtag. The IBM License Metric Tool discovers the license metric tag file and provides license consumption reports that, compared with license entitlements, allow IBM to verify license compliance. The tag file is human-readable and can therefore be interpreted by individuals for audit purposes.

The license metric tag file has a standard format and consists of two parts:

Header information

Contains:

SchemaVersion

Identifies the schema version of the license metric tag file.

SoftwareIdentity

Identifies the software identity instance that provides license metric data. Contains:

• Name

Name of the software identity - IBM PowerAI Vision Training and Inference or IBM PowerAI Vision Inference for Servers

PersistentId

Unique identifier of the software identity. For IBM PowerAI Vision 1.1.3, the assigned **PersistentId** is:

- IBM PowerAI Vision Training and Inference ebb8d2e1bd62488c8c196f568857ae38
- IBM PowerAI Vision Inference for Servers 297aaa94baa441e0ad91a609b24083b7
- InstanceId

Identifies the instance of the software identity that provides metrics by the path of the software for which *SLMTag* is generated - /opt/powerai-vision.

Metrics information

IBM PowerAI Vision 1.1.3 is licensed per Virtual Server, so the values are:

- **Type** *VIRTUAL_SERVER*
- **Period StartTime** is the time of install/deploy, **EndTime** is set to date '9999-12-31' so that the IBM License Metric Tool will understand that it as a perpetual license.

Installing, upgrading, and uninstalling PowerAl Vision

Use the information in these topics to work with the product installation. You can install PowerAI Vision by using the command line (stand-alone) or by using IBM Cloud Private.

Only the most current level of each release of IBM PowerAI Vision should be installed, where version numbers are in the format *version.release.modification*.

After installing PowerAI Vision, you can optionally change the SSL certificate by following the steps in this topic: "Installing a new SSL certificate in PowerAI Vision stand-alone" on page 97.

Prerequisites for installing PowerAl Vision

Before you can install either PowerAI Vision stand-alone or PowerAI Vision with IBM Cloud Private, you must configure Red Hat Enterprise Linux (RHEL), enable the Fedora Extra Packages for Enterprise Linux (EPEL) repository, and install NVIDIA CUDA drivers.

Note: Neither IBM PowerAI nor Watson Machine Learning Accelerator (WML Accelerator) are required for running PowerAI Vision.

- "Red Hat Enterprise Linux operating system and repository setup"
- "Ubuntu operating system and repository setup" on page 20
- "NVIDIA Components: IBM POWER9 specific udev rules (Red Hat only)" on page 20
- "Install the GPU driver (Red Hat)" on page 21
- "Installing the GPU driver (Ubuntu)" on page 21
- "Verify the GPU driver" on page 22
- "Installing docker, nvidia-docker2" on page 23

Red Hat Enterprise Linux operating system and repository setup

1. Enable common, optional, and extra repo channels.

```
IBM POWER8:
```

```
sudo subscription-manager repos --enable=rhel-7-for-power-le-optional-rpms
sudo subscription-manager repos --enable=rhel-7-for-power-le-extras-rpms
IBM POWER9:
sudo subscription-manager repos --enable=rhel-7-for-power-9-optional-rpms
sudo subscription-manager repos --enable=rhel-7-for-power-9-extras-rpms
sudo subscription-manager repos --enable=rhel-7-for-power-9-extras-rpms
sudo subscription-manager repos --enable=rhel-7-for-power-9-rpms
x86:
sudo subscription-manager repos --enable=rhel-7-servers-optional-rpms
sudo subscription-manager repos --enable=rhel-7-servers-extras-rpms
sudo subscription-manager repos --enable=rhel-7-servers-extras-rpms
sudo subscription-manager repos --enable=rhel-7-servers-extras-rpms
```

- Install packages needed for the installation. sudo yum -y install wget nano bzip2
- Enable Fedora Project EPEL (Extra Packages for Enterprise Linux repo: wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm sudo rpm -ihv epel-release-latest-7.noarch.rpm
- 4. Load the latest kernel or do a full update:

- Load the latest kernel: sudo yum update kernel kernel-devel kernel-tools kernel-tools-libs kernel-bootwrapper reboot
- Do a full update:

sudo yum update

sudo reboot

5. Set up nvidia-docker 2.0 to allow PowerAI Vision containers to use the NVIDIA GPUs. For instructions, see Using nvidia-docker 2.0 with RHEL 7

Ubuntu operating system and repository setup

1. Install packages needed for the installation

sudo apt-get install -y wget nano apt-transport-https ca-certificates curl software-properties-common

- Load the latest kernel sudo apt-get install linux-headers-\$(uname -r) sudo reboot
- 3. Or do a full update

sudo apt-get update sudo apt-get dist-upgrade sudo reboot

NVIDIA Components: IBM POWER9[™] specific udev rules (Red Hat only)

- Copy the /lib/udev/rules.d/40-redhat.rules file to the directory for user overridden rules. sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d/
- Edit the /etc/udev/rules.d/40-redhat.rules file. sudo nano /etc/udev/rules.d/40-redhat.rules
- 3. Comment out the entire "Memory hotadd request" section and save the change: # Memory hotadd request

#SUBSYSTEM!="memory", ACTION!="add", GOTO="memory_hotplug_end"

```
#PROGRAM="/bin/uname -p", RESULT=="s390*", GOTO="memory_hotplug_end"
```

#ENV{.state}="online"

```
#PROGRAM="/bin/systemd-detect-virt", RESULT=="none", ENV{.state}="online_movable"
```

```
#ATTR{state}=="offline", ATTR{state}="$env{.state}"
```

#LABEL="memory_hotplug_end"

4. Optionally, delete the first line of the file, since the file was copied to a directory where it cannot be overwritten.

do not edit this file, it will be overwritten on update

 Restart the system for the changes to take effect. sudo reboot

Remove previously installed CUDA and NVIDIA drivers

Before installing the updated GPU driver, uninstall any previously-installed CUDA and NVIDIA drivers. Follow these steps:

1. Remove all CUDA Toolkit and GPU driver packages.

You can display installed CUDA and driver packages by running these commands:

rpm -qa | egrep 'cuda.*(9-2|10-0)'

rpm -qa | egrep '(cuda|nvidia).*(396|410)\.'

Verify the list and remove with **yum remove**.

2. Remove any CUDA Toolkit and GPU driver repository packages.

These should have been included in step 1, but you can confirm with this command: rpm -qa | egrep '(cuda|nvidia).*repo'

Use **yum remove** to remove any that remain.

- Clean the yum repository: sudo yum clean all
- Remove cuDNN and NCCL: sudo rm -rf /usr/local/cuda /usr/local/cuda-9.2 /usr/local/cuda-10.0

5. Reboot the system to unload the GPU driver

sudo shutdown -r now

Install the GPU driver (Red Hat)

Install the driver by following these steps:

- 1. Download the NVIDIA GPU driver:
 - Go to NVIDIA Driver Download.
 - Select Product Type: Tesla
 - Select Product Series: P-Series (for Tesla P100) or V-Series (for Tesla V100).
 - Select Product: Tesla P100 or Tesla V100
 - Select Operating System: Linux POWER LE RHEL 7 for POWER or Linux 64-bit RHEL7 for x86, depending on your cluster architecture. Click Show all Operating Systems if your version is not available.
 - Select CUDA Toolkit: 10.1
 - Click **SEARCH** to go to the download link.
 - Click **Download** to download the driver.
- 2. Install CUDA and the GPU driver.

Note: For AC922 systems: OS and system firmware updates are required before you install the latest GPU driver.

sudo rpm -ivh nvidia*driver-local-repo-rhel7-418.*.rpm
sudo yum install cuda-drivers

3. Set nvidia-persistenced to start at boot

sudo systemctl enable nvidia-persistenced

4. Restart to activate the driver.

Installing the GPU driver (Ubuntu)

The Deep Learning packages require the GPU driver packages from NVIDIA.

Install the GPU driver by following these steps:

- 1. Download the NVIDIA GPU driver.
 - Go to NVIDIA Driver Download.
 - Select Product Type: Tesla
 - Select Product Series: V-Series

- Select Product: Tesla V100
- Select Operating System: Linux POWER LE Ubuntu 18.04 for POWER or Linux 64-bit Ubuntu 18.04 for x86, depending on your cluster architecture. Click Show all Operating Systems if your version is not available.
- Select CUDA Toolkit: 10.1
- Click **SEARCH** to go to the download link.
- Click **Download** to download the driver.
- Ensure the kernel headers are installed and match the running kernel. Compare the outputs of:
 \$ rpm -qa kernel-devel kernel-headers

and

\$ uname -r

Ensure that the kernel-devel and kernel-headers package versions <u>exactly</u> match the version of the running kernel. If they are not identical, bring them in sync as appropriate:

- Install missing packages.
- Update downlevel packages.
- Reboot the system if the packages are newer than the active kernel.
- 3. Install the GPU driver repository and cuda-drivers:

sudo dpkg -i nvidia*driver-local-repo-ubuntu1804-418.*.deb

sudo apt-get update

sudo apt-get install cuda-drivers

- Set nvidia-persistenced to start at boot sudo systemctl enable nvidia-persistenced
- 5. Reboot the system

Verify the GPU driver

Verify that the CUDA drivers are installed by running the /usr/bin/nvidia-smi application.

Example output

For help understanding the output, see "Checking system GPU status" on page 47.

Installing docker, nvidia-docker2

Use these steps in to install docker and nvidia-docker 2.

1. For Ubuntu platforms, a Docker runtime must be installed. If there is no Docker runtime installed yet, install Docker-CE on Ubuntu.

```
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=ppc64e1] https://download.docker.com/linux/ubuntu bionic stable"
sudo apt-get update
sudo apt-get install docker-ce=18.06.1~ce~3-0~ubuntu
```

Note:

The **nvidia-docker run** command must be used with docker-ce (in other words, an Ubuntu host) to leverage the GPUs from within a container.

Installing PowerAl Vision stand-alone

You use the command line to install PowerAI Vision stand-alone.

PowerAl Vision stand-alone installation prerequisites

You must complete the following installation prerequisites steps before you install PowerAI Vision.

- 1. Complete all steps in the "Prerequisites for installing PowerAI Vision" on page 19 topic.
- 2. Your system must have a proper subscription and repository that provides you with updated packages. For information, see the Red Hat Subscription Manager documentation.
- 3. Turn on Extra Packages for Enterprise Linux (EPEL). For information, see the EPEL website.

Attention: You cannot install PowerAI Vision stand-alone on the same system that has the following software installed:

- IBM Data Science Experience (DSX)
- IBM Cloud Private
- Any other Kubernetes based applications
- "Install PowerAI Vision from IBM Passport Advantage"
- "Install PowerAI Vision from AAS " on page 25
- "Install PowerAI Vision trial mode" on page 26

Install PowerAl Vision from IBM Passport Advantage

To install PowerAI Vision stand-alone, complete the following steps:

- 1. Download the product tar file from the IBM Passport Advantage website.
- 2. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

3. From the directory that contains the downloaded tar file, run the appropriate script as root or with sudo privileges:

sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

- (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script: sudo /opt/powerai-vision/sbin/firewall.sh
- After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values, see "Managing users" on page 95.

You must read and accept the license agreement that is displayed before you can use PowerAI Vision. It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this script:

sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the **helm.sh status vision** script, you can verify which PowerAI Vision components are available by locating the Deployment section and identifying that the AVAILABLE column has a value of 1 for each component. The following is an example of the output from the **helm.sh status vision** script that shows all components are available:

NAME	DESIRED	CURRENT	UP-TO-DATE	AVAILABLE	AGE
powerai-vision-mongodb	1	1	1	1	3h
powerai-vision-portal	1	1	1	1	3h
powerai-vision-postgres	1	1	1	1	3h
powerai-vision-taskanaly	1	1	1	1	3h
powerai-vision-ui	1	1	1	1	3h
powerai-vision-video-nginx	1	1	1	1	3h
powerai-vision-video-portal	1	1	1	1	3h
powerai-vision-video-rabmq	1	1	1	1	3h
powerai-vision-video-redis	1	1	1	1	3h
powerai-vision-video-test-nginx	1	1	1	1	3h
powerai-vision-video-test-portal	1	1	1	1	3h
powerai-vision-video-test-rabmq	1	1	1	1	3h
powerai-vision-video-test-redis	1	1	1	1	3h

6. Install any available fix packs. For instructions see "Getting fixes from Fix Central" on page 129.

Install PowerAl Vision from AAS

- 1. Download the product tar.gz file from Advanced Administration System (AAS). This system is also called Entitled Software Support (ESS).
- 2. Unzip and untar the tar.gz file by running this command. The install files are extracted to powerai-vision-aas-1.1.3.1/.

gunzip -c file_name.tar.gz | tar -xvf

3. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

4. From the directory that contains the extracted tar file, run this script as root or with sudo privileges: sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

- (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script: sudo /opt/powerai-vision/sbin/firewall.sh
- 6. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values, see "Managing users" on page 95.

You must read and accept the license agreement that is displayed before you can use PowerAI Vision. It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this script:

sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the **helm.sh status vision** script, you can verify which PowerAI Vision components are available by locating the Deployment section and identifying that the AVAILABLE column has a value of 1 for each component. The following is an example of the output from the **helm.sh status vision** script that shows all components are available:

NAME	DESIRED	CURRENT	UP-TO-DATE	AVAILABLE	AGE
powerai-vision-mongodb	1	1	1	1	3h
powerai-vision-portal	1	1	1	1	3h
powerai-vision-postgres	1	1	1	1	3h
powerai-vision-taskanaly	1	1	1	1	3h
powerai-vision-ui	1	1	1	1	3h
powerai-vision-video-nginx	1	1	1	1	3h
powerai-vision-video-portal	1	1	1	1	3h
powerai-vision-video-rabmq	1	1	1	1	3h
powerai-vision-video-redis	1	1	1	1	3h
powerai-vision-video-test-nginx	1	1	1	1	3h
powerai-vision-video-test-portal	1	1	1	1	3h
powerai-vision-video-test-rabmq	1	1	1	1	3h
powerai-vision-video-test-redis	1	1	1	1	3h

7. Install any available fix packs. For instructions see "Getting fixes from Fix Central" on page 129.

Install PowerAl Vision trial mode

- 1. Go to PowerAI Vision Trial download site. Download the .tar file and the .rpm files as instructed.
- 2. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

3. From the directory that contains the downloaded tar file, run the appropriate script as root or with sudo privileges:

sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

- (RHEL only) Open ports for the firewall to access PowerAI Vision by running this script: sudo /opt/powerai-vision/sbin/firewall.sh
- 5. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai vision start.sh

A user named admin is created with a password of passw0rd. For instructions to change these values, see "Managing users" on page 95.

You must read and accept the license agreement that is displayed before you can use PowerAI Vision. It can take several minutes to start PowerAI Vision. To check the status of the startup process, run this script:

sudo /opt/powerai-vision/bin/helm.sh status vision

In the output from the **helm.sh status vision** script, you can verify which PowerAI Vision components are available by locating the Deployment section and identifying that the AVAILABLE column has a value of 1 for each component. The following is an example of the output from the **helm.sh status vision** script that shows all components are available:

NAME	DESTDED	CUDDENT		AVATIARIE	ACE
	1	1		1	
poweral-vision-mongodb	1	1	1	1	3n
powerai-vision-portal	1	1	1	1	3h
powerai-vision-postgres	1	1	1	1	3h
powerai-vision-taskanaly	1	1	1	1	3h
powerai-vision-ui	1	1	1	1	3h
powerai-vision-video-nginx	1	1	1	1	3h
powerai-vision-video-portal	1	1	1	1	3h
powerai-vision-video-rabmq	1	1	1	1	3h
powerai-vision-video-redis	1	1	1	1	3h
powerai-vision-video-test-nginx	1	1	1	1	3h
powerai-vision-video-test-portal	1	1	1	1	3h
powerai-vision-video-test-rabmq	1	1	1	1	3h
powerai-vision-video-test-redis	1	1	1	1	3h

Related concepts:

"Logging in to PowerAI Vision" on page 49 Follow these steps to log in to PowerAI Vision.

Installing PowerAl Vision with IBM Cloud Private

If you have more than one IBM Power Systems server available, you can use IBM Cloud Private 2.1.0.3 or 3.1.0 to install a single instance of PowerAI Vision that has access to all the Power Systems GPUs across the entire cluster.

If you have only a single IBM Power Systems server and do not have an existing IBM Cloud Private environment, you should use the PowerAI Vision stand-alone process. For more information, see the "Installing PowerAI Vision stand-alone" on page 23 topic.

To install PowerAI Vision with IBM Cloud Private, complete the following steps:

Notes:

- If IBM Cloud Private is already installed and configured in your environment, you can go to step 4.
- The links to IBM Cloud Private go to the 3.1.0 Knowledge Center. To go to a different version, click the link, then click **Change version**.
- 1. Install IBM Cloud Private. For more information, see the Installing IBM Cloud Private topic.
- 2. Install the IBM Cloud CLI. For more information, see the Install IBM Cloud CLI topic.
- **3**. Authenticate to your master node in your IBM Cloud Private environment. For more information, see the Configuring authentication for the Docker CLI topic.

To log in to the IBM Cloud Private cluster, run the appropriate command:

- In an IBM Cloud Private 2.1.0 environment, run:
- bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation
- In an IBM Cloud Private 3.1.0 environment, run:

cloudctl login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation

4. Set up your system to install your IBM Cloud Private deployment into a non-default namespace. It is recommended that you do not install into the default namespace for security reasons.

Important: Install each distinct deployment of IBM Cloud Private into a unique namespace.

a. Create an appropriate ClusterRoleBinding to enable PowerAI Vision to query Kubernetes. To create this, copy the below text into a crb.yaml file, where *CustomNamespace* is your custom namespace name:

```
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
    name: CustomNamespace-crb
```

```
roleRef:
    apiGroup: rbac.authorization.k8s.io
    kind: ClusterRole
    name: cluster-admin
subjects:
    -
    kind: ServiceAccount
    name: default
    namespace: CustomNamespace
```

b. Run the following command:

kubectl create -f crb.yaml

- 5. Download the appropriate tar file from IBM Passport Advantage.
- 6. Untar the powerai-vision-ppa-1.1.3.0.tar tar file. It contains install packages for the standalone product, as well as the tar file with the containers that must be loaded for the IBM Cloud Private installation.
- 7. To make PowerAI Vision available in IBM Cloud Private catalog, run the appropriate command:
 - IBM Cloud Private 2.1.0.3: bx pr load-ppa-archive --archive file_name.tar [--clustername <cluster_CA_domain>]
 - IBM Cloud Private 3.1.0 or later:

cloudctl catalog load-archive --archive file_name.tar --registry <icp full host name>:8500/<namespace>

Where:

--registry <value>

Lets you specify the docker registry that the images will be pushed to.

Example: mycluster-icp:8500/<namespace>

--clustername <*cluster_CA_domain*>

Lets you specify the certificate authority (CA) domain. If you did not specify a CA domain, the default value is mycluster.icp.

- **8**. Review the Chart README for PowerAI Vision carefully. It documents prerequisites, requirements, and limitations of PowerAI Vision in IBM Cloud Private.
- **9**. Verify that you have a minimum of 40 GB of persistent storage. If your IBM Cloud Private installation has dynamic provisioned storage, you can use it for your 40 GB of persistent storage. To manually create persistent volumes in IBM Cloud Private, see the Creating a Persistent Volume topic. After you create the persistent volume, you must make the volume sharable across all nodes in the cluster.

Note: Do not use HostPath for the persistent storage unless you have only one node in your cluster. See Creating a Persistent Volume in the IBM Cloud Private documentation for details.

- To install PowerAI Vision from the IBM Cloud Private catalog, from the navigation menu select Catalog > Helm Charts.
- 11. In the search box, enter vision and click powerai-vision. Review the information.
- 12. Click **Configure** and enter information for the **Release name** and the **Namespace** fields. The default user name is admin and the default password is password. For instructions to change these values, see "Managing users" on page 95. For information about namespaces, see Namespaces in the IBM Cloud Private Knowledge Center.
- 13. Click Install.
- 14. For information about accessing PowerAI Vision, see Logging into PowerAI Vision.

Important: NFS volumes should have the "no_root_squash" flag set in /etc/exports: /var/nfs *(rw,no_root_squash,no_subtree_check)
Upgrading PowerAl Vision

When upgrading to the latest version of PowerAI Vision, your data from the previous release will not be lost, as long as you are upgrading to the same type of install. For example; from the stand-alone version to the stand-alone version. However, you will need to delete and redeploy any deployed models after upgrading.

- Upgrade the stand-alone version
- Upgrade PowerAI Vision with IBM Cloud Private

Upgrade the stand-alone version

- Stop the current instance of PowerAI Vision by running the following script: sudo /opt/powerai-vision/bin/powerai vision stop.sh
- 2. Obtain and install PowerAI Vision:

Install PowerAI Vision from IBM Passport Advantage

- a. Download the product tar file from the IBM Passport Advantage website.
- b. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

You will be prompted to accept the upgrade of the product if you are running an interactive install.

c. From the directory that contains the downloaded tar file, run the appropriate script as root or with sudo privileges:

sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar

Note: The installation process can take some time to complete.

d. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. Users will be preserved from the previous installation on upgrade. For instructions to manage existing users, and to learn how to create new users, see "Managing users" on page 95.

e. Install any available fix packs. For instructions see "Getting fixes from Fix Central" on page 129.

Install PowerAI Vision from AAS

- a. Download the product tar.gz file from Advanced Administration System (AAS). This system is also called Entitled Software Support (ESS).
- b. Unzip and untar the tar.gz file by running this command. The install files are extracted to powerai-vision-aas-1.1.3.1/.

gunzip -c file_name.tar.gz | tar -xvf

c. Decompress the product tar file, and run the installation command for the platform you are installing on.

RHEL

sudo yum install ./<file_name>.rpm

Ubuntu

sudo dpkg -i ./<file_name>.deb

d. From the directory that contains the extracted tar file, run this script as root or with sudo privileges:

```
sudo /opt/powerai-vision/bin/load_images.sh -f ./file_name.tar
```

Note: The installation process can take some time to complete.

e. After the installation is complete, you can start PowerAI Vision by running this script: sudo /opt/powerai-vision/bin/powerai_vision_start.sh

A user named admin is created with a password of passw0rd. . Users will be preserved from the previous installation on upgrade. For instructions to manage existing users, and to learn how to create new users, see "Managing users" on page 95.

- f. Install any available fix packs. For instructions see "Getting fixes from Fix Central" on page 129.
- **3**. Delete any deployed GoogLeNet (Classification) and FR-CNN (object detection) models deployed in the previous version of the product to allow redeployment and GPU resource sharing. Until they are deleted, the models will attempt to deploy and will fail. To delete a deployed model, click **Deployed Models**. Next, select the model that you want to delete and click **Delete**. The trained model is not deleted from PowerAI Vision.
- 4. Redeploy trained models as necessary.
 - a. Click Models from the menu.
 - b. Select the model you want to deploy and click **Deploy**.
 - c. Specify a name for the model, and for models that were trained with the Optimized for speed (tiny YOLO v2) model, choose the accelerator to deploy to. You can choose GPU, CPU, or Xilinx FPGA 16 bit (technology preview).
 - d. Click **Deploy**. The Deployed Models page is displayed. When the model has been deployed, the status column displays **Ready**.
 - e. Click the deployed model to get the API endpoint, to view details about the model, such as the owner and the accuracy, and to test other videos or images against the model.

Upgrade PowerAI Vision with IBM Cloud Private

- 1. Download the product tar file from the IBM Passport Advantage website.
- 2. To make PowerAI Vision available in IBM Cloud Private catalog, run the appropriate command:
 - IBM Cloud Private 2.1.0.3:
 - bx pr load-ppa-archive --archive *file_name*.tar [--clustername <*cluster_CA_domain*>]
 - IBM Cloud Private 3.1.0 or later:

cloudctl catalog load-archive --archive file_name.tar --registry <icp full host name>:8500/<namespace>

Where:

--registry <value>

Lets you specify the docker registry that the images will be pushed to.

Example:

mycluster-icp:8500/<namespace>

--clustername <cluster_CA_domain>

Lets you specify the certificate authority (CA) domain. If you did not specify a CA domain, the default value is mycluster.icp.

3. Navigate to your Helm Release. Click **Upgrade** and the upgrade to the new PowerAI Vision images starts.

Note: The upgrade process can take some time to complete.

4. As part of the upgrade process, PowerAI Vision is restarted and a user named admin is created with a password of passw0rd. Users will be preserved from the previous installation on upgrade. For instructions to manage existing users, and to learn how to create new users, see "Managing users" on page 95.

Uninstalling PowerAl Vision stand-alone

You must uninstall PowerAI Vision stand-alone on your system, before you can install IBM Cloud Private, IBM Data Science Experience Local, or other Kubernetes-based applications.

To uninstall PowerAI Vision, complete the following steps:

Note: If you run the following commands, all the data that you gathered is deleted. Export your data sets and models before you run the following commands.

- Stop the current instance of PowerAI Vision by running the following script: sudo /opt/powerai-vision/bin/powerai_vision_stop.sh
- 2. Remove previously installed images by running the following script:

sudo /opt/powerai-vision/bin/purge_image.sh 1.1.3.0

Optionally remove all product data by running the following script. This will remove data sets, models, and so on:

sudo /opt/powerai-vision/bin/purge_data.sh

- 3. Remove PowerAI Vision by running the following command:
 - For RHEL:

sudo yum remove powerai-vision

• For Ubuntu:

sudo dpkg --remove powerai-vision

4. Delete the data directory by running the following command:

sudo rm -rf /opt/powerai-vision/

- 5. Verify that PowerAI Vision was uninstalled by running the following command:
 - For RHEL:

```
rpm -q powerai-vision
```

• For Ubuntu:

dpkg -l powerai-vision

Checking the application and environment

After installation of PowerAI Vision, you can check the status of the application and environment by using commands documented in these topics. The Kubernetes commands helm.sh and kubectl.sh are installed in the bin directory of the product install path. (default: /opt/powerai-vision).

Checking the application Docker images in standalone installation

Space limitations or Kubernetes garbage collection activities can result in PowerAI Vision Docker images not being available in the Docker repository on a system.

- "Using docker images to validate PowerAI Vision Docker image availability"
- "Loading missing images" on page 34

Using docker images to validate PowerAl Vision Docker image availability

When load_images.sh runs successfully, it indicates that the following images were successfully loaded: # /opt/powerai-vision/bin/load images.sh -f <path>/powerai-vision-images-1.1.3.0.tar | grep -i loaded

```
[ INFO ] Waiting for docker loads to complete. This will take some time...
Loaded image: nvidia/k8s-device-plugin:1.11
Loaded image: coredns/coredns:1.2.6
Loaded image: gcr.io/google containers/pause:3.1
Loaded image: powerai-vision-tiller:2.12.0
Loaded image: gcr.io/google_containers/hyperkube:v1.13.0
Loaded image: quay.io/kubernetes-ingress-controller/nginx-ingress-controller-ppc64le:0.20.0
Loaded image: gcr.io/google containers/etcd:3.3.10
Loaded image: powerai-vision-video-nginx:1.1.3.0
Loaded image: powerai-vision-video-test-portal:1.1.3.0
Loaded image: powerai-vision-models:1.1.3.0
Loaded image: postgres:9.6.8
Loaded image: powerai-vision-taskanaly:1.1.3.0
Loaded image: powerai-vision-dnn-detectron:1.1.3.0
Loaded image: powerai-vision-preprocessing:1.1.3.0
Loaded image: powerai-vision-dnn-microservices:1.1.3.0
Loaded image: powerai-vision-dnn-custom:1.1.3.0
Loaded image: powerai-vision-ui:1.1.3.0
Loaded image: powerai-vision-portal:1.1.3.0
Loaded image: powerai-vision-video-test-nginx:1.1.3.0
Loaded image: powerai-vision-video-portal:1.1.3.0
Loaded image: powerai-vision-video-redis:1.1.3.0
Loaded image: powerai-vision-video-rabbitmq:1.1.3.0
Loaded image: powerai-vision-keycloak:1.1.3.0
Loaded image: powerai-vision-usermgt:1.1.3.0
Loaded image: powerai-vision-fpga-device-plugin:1.1.3.0
Loaded image: powerai-vision-mongodb:1.1.3.0
Loaded image: powerai-vision-dnn-edge:1.1.3.0
```

[INFO] SUCCESS> All images loaded successfully.

At any time, these images should also show in the output of Docker images:

\$ sudo docker images

REPOSITORY	TAG	IMAGE ID	CREATED
powerai-vision-video-nginx	1.1.3.0	d386df55bbc2	4 weeks
powerai-vision-video-portal	1.1.3.0	6aa55d2e3955	4 weeks
powerai-vision-video-test-nginx	1.1.3.0	99973630c16b	4 weeks
powerai-vision-video-test-portal	1.1.3.0	2c98ca0b5df5	4 weeks
powerai-vision-ui	1.1.3.0	c20d08178281	4 weeks

powerai-vision-keycloak	1.1.3.0	15a65d2d0930	4 weeks ag
powerai-vision-dnn-edge	1.1.3.0	93a4b845eddd	4 weeks ag
powerai-vision-dnn-custom	1.1.3.0	c620a5e433f6	4 weeks ag
powerai-vision-preprocessing	1.1.3.0	45216045eda7	4 weeks ag
powerai-vision-taskanaly	1.1.3.0	2d0c24984c7f	4 weeks ag
powerai-vision-dnn-microservices	1.1.3.0	384f5f362a5e	4 weeks ag
powerai-vision-dnn-detectron	1.1.3.0	dd015ae0b4f7	4 weeks ag
powerai-vision-fpga-device-plugin	1.1.3.0	3721f6731112	4 weeks ag
powerai-vision-portal	1.1.3.0	055db7f4d216	5 weeks ag
powerai-vision-models	1.1.3.0	7799c735142e	5 weeks ag
powerai-vision-video-rabbitmq	1.1.3.0	dba5c311aa8b	5 weeks ag
powerai-vision-video-redis	1.1.3.0	ae1e734744f1	5 weeks ag
powerai-vision-usermgt	1.1.3.0	addd5bae5ab6	6 weeks ag
powerai-vision-mongodb	1.1.3.0	219547699e5b	6 weeks ag
powerai-vision-tiller	2.12.0	8a925bb46988	4 months a
gcr.io/google containers/hyperkube	v1.13.0	02fc0a6f63cc	4 months a
gcr.io/google_containers/etcd	3.3.10	af050d2caadf	4 months a
coredns/coredns	1.2.6	9dda08c8b15f	5 months a
<pre>quay.io/kubernetes-ingress-controller/nginx-ingress-controller-ppc64le</pre>	0.20.0	9aadc57947cb	6 months a
nvidia/k8s-device-plugin	1.11	5c02dafe13ad	8 months a
postgres	9.6.8	7bf8f906163b	11 months
gcr.io/google_containers/pause	3.1	1652adb11bd5	16 months

Loading missing images

If any of the PowerAI Vision Docker images are not available in the Docker repository, application failures can occur. In this case, run load_images.sh again to load any of the images that are missing.

Checking the application status in an ICP installation

Before you can use the kubect1 commands to check the application status, you must log in to the IBM Cloud Private cluster.

- In an IBM Cloud Private 2.1.0 environment, run: bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation
- In an IBM Cloud Private 3.1.0 environment, run: cloudctl login -a https://cluster-domain-name>:8443/ --skip-ssl-validation

Example

In the following example, cloudctl is used to log in to the IBM Cloud Private cluster icpl with master node icpl.domain.com as the user admin, to access the default namespace where the PowerAI Vision application is installed:

```
# cloudctl login -a https://icpl.domain.com:8443 --skip-ssl-validation -u admin
```

```
Password>
Authenticating...
0K
Targeted account icp1 Account (id-icp1-account)
Select a namespace:
1. cert-manager
2. default
3. ibmcom
4. istio-system
5. kube-public
kube-system
7. platform
8. services
9. vision
Enter a number> 2
Targeted namespace default
```

```
Configuring kubectl ...

Property "clusters.icpl" unset.

Property "users.icpl-user" unset.

Property "contexts.icpl-context" unset.

Cluster "icpl" set.

User "icpl-user" set.

Context "icpl-context" created.

Switched to context "icpl-context".

OK

Configuring helm: /root/.helm

OK

#
```

Now the kubect1 commands can be used to similar to the way they are used in the standalone environment.

Checking Kubernetes services status

The Kubernetes infrastructure is used to run the PowerAI Vision application. The **kubectl** command can be used to check the status of these underlying services, using the **--namespace kube-system** option.

- "Using kubectl get pods to check kube-system"
- "Using kubectl describe pods to check kube-system"

Using kubectl get pods to check kube-system

The kubectl command is used to show the detailed status of the Kubernetes pods deployed to run the PowerAI Vision application.

Example output

(<pre># /opt/powerai-vision/bin/kubectl.sh</pre>	get pods	namespac	ce kube-sys	tem
	NAME	READY	STATUS	RESTARTS	AGE
	coredns-76f484447b-9sqwz	1/1	Running	0	3d4h
	nginx-ingress-lb-ppc64le-hmtg5	1/1	Running	0	3d4h
	nvidia-device-plugin-daemonset-wdlkl	1/1	Running	0	3d4h
l	tiller-deploy-7f65888dc8-kcglg	1/1	Running	0	3d4h
1					

Interpreting the output

- When the Kubernetes system is running correctly, each of the pods should have:
 - In the READY column all pods should be counted for example, "1/1" or "3/3".
 - A value of "Running" in the STATUS column.
- A STATUS value other than "Running" indicates an issue with the Kubernetes infrastructure.
- A non-0, and growing, value in the RESTARTS column indicates an issue with that Kubernetes pod.

Using kubectl describe pods to check kube-system

The kubectl describe pods command provides detailed information about each of the pods that provide Kubernetes infrastructure. If the output from a specific pod is desired, run the command kubectl describe pod *pod_name* --namespace kube-system.

Example output

The output from the command is verbose, so sample output from only one pod is shown:

//opt/powerai-v	/ision/bin/kubectl.sh describe podsnamespace kube-system							
Name:	coredns-/bt48444/b-9sqwz							
Namespace:	kube-system							
Node:								
Start Time:	ule, 12 Mar 2019 07:44:34 -0500							
Labels:	(8s-app=kube-dns							
	od-template-hash=76f484447b							
Annotations:	<none></none>							
Status:	Running							
IP:	172.17.0.2							
Controlled By:	ReplicaSet/coredns-76f484447b							
Containers:								
coredns:								
Container II	0: docker://e94399e73b84c4fe55f54807cfbfdcacdafcab27fa2f746421bfd5ba9443e175							
Image:	coredns/coredns:1.2.6							
Image ID:	docker-pullable://coredns/coredns@sha256:81936728011c0df9404cb70b95c17bbc8af922ec9a70d0561a5d01fef	a6ffa51						
Ports:	53/UDP, 53/TCP, 9153/TCP							
Host Ports:	0/UDP, 0/TCP, 0/TCP							
Args:	-conf /etc/coredns/Corefile							
State:	Running							
Started:	Tue. 12 Mar 2019 07:44:44 -0500							
Ready:								
Restart Cour	http://www.andle.com/andle							
limits.								
memory.	170Mi							
Requests.	1/011							
cou.	100m							
memory.	100m 70Mi							
liveness:	$http_{qat}$ http:///2020/boalth_delay=60s_timeout=5s_period=10s_fsuccess=1_failure=5							
Environment,	sonos							
Mounts.								
riounts:	the from config volume (no) (var/num/cocrete/kubarnetec is/conviceaccount from default taken varget (no)							
Conditions:								
	Status							
Type								
Deedu								
Ready								
ContainerSkead	ly True							
Poascheaulea	Irue							
volumes:								
contig-volume:								
Type:	ConfigMap (a volume populated by a ConfigMap)							
Name:	coreans							
Uptional:	Talse							
default-token-	wgpqt:							
lype:	Secret (a volume populated by a Secret)							
SecretName:	derault-token-wgpqt							
Uptional:	Talse							
QOS Class:	Burstable							
Node-Selectors:	beta.kubernetes.10/os=11nux							
Iolerations:	CriticalAddonsUnly							
	node.kubernetes.io/not-ready:NoExecute for 300s							
	node.kubernetes.io/unreachable:NoExecute for 300sE							
Events:	<none></none>							

Interpreting the output

Significant fields providing status of the Kubernetes pods include:

- The Status field should be "Running" any other status will indicate issues with the environment.
- In the **Conditions** section, the **Ready** field should indicate "True". Any other value indicates that there are issues with the environment.
- If there are issues with any pods, the **Events** section of the pod should have information about issues the pod encountered.

Checking Kubernetes node status

Use these commands to check the status of the nodes in the environment.

- "kubectl.sh get pods"
- "kubectl describe nodes command"
- "kubectl describe pods command" on page 39

kubectl.sh get pods

The kubectl command is used to show the detailed status of the Kubernetes pods deployed to run the PowerAI Vision application.

Example output

<pre>\$ /opt/powerai-vision/bin/kubectl.sh get pods</pre>				
NAME	READY	STATUS	RESTARTS	AGE
<pre>powerai-vision-cod-infer-33f53f4e-b6d4-4476-bb19-c16c0e4c0sbtv6</pre>	1/1	Running	0	3d1h
powerai-vision-cod-infer-b4d1e503-2f43-4652-9679-650b3ae1b4nkhp	1/1	Running	0	34h
powerai-vision-dnn-infer-f5d2182a-2aae-496c-9688-3d1e7e3977pxr9	1/1	Running	0	3d1h
powerai-vision-fpga-device-plugin-bg69p	1/1	Running	0	3d4h
powerai-vision-keycloak-7df657794b-6v4pb	1/1	Running	0	3d4h
powerai-vision-mongodb-6cdc4b654b-c7g99	1/1	Running	0	3d4h
powerai-vision-portal-7fb5d5d66-6tk45	1/1	Running	0	3d4h
powerai-vision-postgres-54d6dbdcf4-zp27c	1/1	Running	0	3d4h
powerai-vision-taskanaly-54bf4f658f-b2hzw	1/1	Running	0	3d4h
powerai-vision-ui-85494f77f7-9wg68	1/1	Running	0	3d4h
powerai-vision-video-nginx-84f4dd84f6-k4tf2	1/1	Running	0	3d4h
powerai-vision-video-portal-59678d77fb-f4qxv	1/1	Running	0	3d4h
powerai-vision-video-rabmq-bb8f588c6-k9spc	1/1	Running	0	3d4h
powerai-vision-video-redis-5dcf7f4b74-q6v86	1/1	Running	0	3d4h
powerai-vision-video-test-nginx-7fb6ff6dd9-b7vzl	1/1	Running	0	3d4h
powerai-vision-video-test-portal-5988b6d66-vpvvk	1/1	Running	0	3d4h
powerai-vision-video-test-rabmq-7c55648476-d7154	1/1	Running	0	3d4h
powerai-vision-video-test-redis-f64c589f8-rkzf7	1/1	Running	0	3d4h

Interpreting the output

- When the application is running correctly, each of the pods should have:
 - A value of 1/1 in the READY column
 - A value of Running in the STATUS column
- In the above example output, pods with infer in the name are created when a model is deployed. These will only appear if there are models deployed in the instance of the application running on the system.
- A STATUS value other than Running indicates an issue with the pod.
- A non-0 and increasing value in the RESTARTS column indicates an issue with that pod.

If there are indications of issues with pods, see "Troubleshooting known issues - PowerAI Vision standard install" on page 111.

kubectl describe nodes command

The kubectl describe nodes command provides status information regarding the Kubernetes environment used to run the PowerAI Vision application.

Example output

/opt/powerai-visio	n/bin/ku 127 0	bectl	.sh describe	e nodes											
Roles.	12/.U.	0.1													
Labels:	beta.k beta.k kuberr	ubern ubern	etes.io/arch etes.io/os=1 io/hostname=	n=ppc64le inux 127.0.0.1											
Annotations:	node.a volume	lpha. s.kub	kubernetes.i ernetes.io/c	o/ttl: 0	-managed	-atta	ch-det	ach:	true						
CreationTimestamp:	Tue, 1	2 Mar	2019 07:44:	29 -0500											
Taints:	<none></none>														
Unschedulable:	Talse														
	Status	last	HoarthoatTin			last	Tranci	tionT	imo		R۵	ason		Mossago	
MemoryPressure DiskPressure	False False	Fri, Fri,	15 Mar 2019 15 Mar 2019) 12:08:05) 12:08:05	-0500 -0500	Tue, Tue,	12 Ma 12 Ma	r 201 r 201	9 07:44 9 07:44	:28 -0500 :28 -0500) Ku) Ku	beletHasSuf beletHasNoD	ficientMemory iskPressure	kubelet h kubelet h	nas s nas r
Ready	True	Fri,	15 Mar 2019	12.00.05	-0500	Tue,	12 Ma	r 201	9 07:44	.20 -0500	, ки) Ки	heletReadv	ITCTENTFID	kubelet i	ias s is no
Addresses:	TTue	,	15 Mai 2015	12.00.03	-0300	ruc,	12 110	1 201	5 07.77	.25 -0500	/	beretheady		Ruberet	3 pc
InternalIP: 127	.0.0.1														
Hostname: 127 Capacity:	.0.0.1														
cpu:	160	65704	<i>,</i> .												
ephemeral-storage	: 92239	65/2K	.1												
hugepages-1001:	0														
memory:	13378	4000K	(i												
nvidia.com/gpu:	4														
pods:	500														
Allocatable:															
cpu:	160	00700													
epnemeral-storage	: 85008	06/93	48												
hugepages-16Mi:	0														
memory:	13368	1600K	(i												
nvidia.com/gpu:	4														
pods:	500														
System Info:		2.4	16 4 40 4 7 5 - 7 10 -	- 00750004		-									
Machine ID: System IIIID:		30 21	01121/50/030	192/58024	9a28e7e0	5									
Boot ID:		a4	952737-d779-	43d8-ae75	-8432ab0	41c00									
Kernel Version:		4.	15.0-36-gene	eric	0.02420										
OS Image:		De	bian GNU/Lin	nux 9 (stro	etch)										
Operating System:		li	nux												
Architecture:	Voncior	pp	c64le	1											
Kubelet Version.	version	v1	13 0	. 1											
Kube-Proxy Versio	n:	v1	.13.0												
Non-terminated Pod	s:	(2	2 in total)												
Namespace		Na	me								С	PU Requests	CPU Limits	Memory Requ	lests
						10 -	40 007	6 6 6	0 616-0	0100ak+	-	(0%)	0 (0%)	0 (0%)	
default		po	weral-vision	-cod-infe	r-331531 r-b/d105	40-00 03-2f	04-44/ 13_165	2-067	9-C10C0 9-650b3	e4CUSDLV0) () \ ()	(0%) (0%)	0 (0%)	0 (0%)	
default		00	werai-vision	n-dnn-infe	r-f5d218	2a-2a	ae-496	c-968	8-3d1e7	e3977pxr9) 0	(0%)	0 (0%)	0 (0%)	
default		po	werai-visior	n-fpga-dev	ice-plug	in-bg	69p				0	(0%)	0 (0%)	0 (0%)	
default		ро	werai-vision	n-keycloak	-7df6577	94b-6	v4pb				0	(0%)	0 (0%)	0 (0%)	
default		ро	werai-vision	-mongodb-	6cdc4b65	4b-c7	g99				0	(0%)	0 (0%)	0 (0%)	
default default		po	weral-vision	1-portal-/	10505066	-6tk4	5				0	(0%) (0%)	0 (0%)	0 (0%)	
default		po no	werdi-vision	i-postgres _taskanal	-54000D0 v_54hf4f	658f_	h2hzw				0	(0%) (0%)	0 (0%)	0 (0%)	
default		00	werai-vision	n-ui-85494	f77f7-9w	a68	DEIIZW				0	(0%) (0%)	0 (0%)	0 (0%)	
default		ро	owerai-vision	n-video-ng	inx-84f4	dd84f	6-k4tf	2			0	(0%)	0 (0%)	0 (0%)	
default		ро	werai-vision	n-video-por	rtal-596	78d77	fb-f4q	xv			0	(0%)	0 (0%)	0 (0%)	
default		ро	werai-vision	n-video-ral	bmq-bb8f	588c6	-k9spc	c			0	(0%) (0%)	0 (0%)	0 (0%)	
default		po	weral-Vision	1-video-re	uis-5dCt	/T4D/	4-dpл8 tteyyo	0 _h7v-	1		0	(⊍%) (0%)	୰(⊍%) 0(0⊱)	୰(U%) 0 (0%)	
default		p0 no	werai-vision	-video_te	st-nyrnx st-norta	-/100]_508	110009 866466	-vnvv	r k		0 A	(0%) (0%)	0 (0%)	0 (0%)	
default		04	werai-vision	n-video-te	st-rabmo	-7c55	648476	-d715	4		0	(0%)	0 (0%)	0 (0%)	
default		po	werai-visior	n-video-te	st-redis	-f64c	589f8-	rkzf7			Õ	(0%)	0 (0%)	0 (0%)	
kube-system		co	redns-76f484	1447b-9sqw	z						1	00m (0%)	0 (0%)	70Mi (0%)	
kube-system		ng	inx-ingress-	1b-ppc641	e-hmtg5						0	(0%) (0%)	0 (0%)	0 (0%)	
Kube-system		nv	llon dorlar	-plugin-da	emonset-	wdlkl					0	(0%) (0%)	U (U%)	U (U%)	
kube-system		ι1	i i er-uepioy-	-/ 1020000C	o-kcyig						0	(0%)	0 (0%)	0 (0%)	

	(Total limits may	be over 100	percent, i.e., overcommitted.)
	Resource	Requests	Limits
	cpu memory ephemeral-storage nvidia.com/gpu	100m (0%) 70Mi (0%) 0 (0%) 3	0 (0%) 170Mi (0%) 0 (0%) 3
E١	vents:	<none></none>	

Interpreting the output

- Most of the information is informational regarding the system resources (CPUs, GPUs, memory) and version information (OS, Docker, Kubernetes).
- The **Conditions** section can indicate whether there are system resource issues that will affect the running of the application. For example, if any of the **OutOfDisk**, **MemoryPressure**, or **DiskPressure** conditions are True, there are insufficient system resources to run PowerAI Vision. For example, the following **Conditions** section shows a system that does not have sufficient disk space available, indicated by **DiskPressure** status of True:

Conditions: Type	Status	LastHeartbeatTime	LastTransitionTime	Reason	Message
 OutOfDisk MemoryPressure DiskPressure Ready	False False True True	 [] [] []	 [] [] []	KubeletHasSufficientDisk KubeletHasSufficientMemory KubeletHasDiskPressure KubeletReady	kubelet has su kubelet has su kubelet has d kubelet is po

• The **Events** section will also have messages that can indicate if there are issues with the environment. For example, the following events indicate issues with disk space that have led to Kubernetes attempting to reclaim resources ("eviction") which can affect the availability of Kubernetes applications:

Events:				
Туре	Reason	Age	From	Message
Normal Warnin	NodeHasDiskPressure g EvictionThresholdMet	5m 3s (x23 over 5m)	kubelet, 127.0.0.1 kubelet, 127.0.0.1	Node 127.0.0.1 status is now: NodeHasDiskPressure Attempting to reclaim nodefs

kubectl describe pods command

The kubectl.sh describe pods command provides detailed information about each of the pods used by the PowerAI Vision application. If the output from a specific pod is desired, the command kubectl.sh describe pod *podname*. To determine the values for *podname* look at the output from kubectl.sh get pods.

Example output

The output from the command is verbose, so sample output from only one pod is shown:

/opt/powerai-vi	sion/bin/kubectl.sh describe pods							
Name:	powerai-vision-ui-85494f77f7-9wg68							
Namespace:	default							
Node:	127.0.0.1/127.0.0.1							
Start Time:	Tue, 12 Mar 2019 07:45:05 -0500							
Labels:	app=powerai-vision							
	chart=ibm-powerai-vision-prod-1.3.0							
	component=poweral-vision-ui							
	netitage-iiiei							
	run=powerai-vision-ui-deployment-pod							
Annotations:	checksum/config: 94cf7f105d3b90aa74290ec94b53065f919b35c0d3048d399ebac408cf035679							
	productID: 5737-H10							
	productName: IBM PowerAI Vision							
o	productVersion: 1.1.3.0							
Status:	Running							
IP: Controlled By:	1/2.1/.0.9							
Containers.	represely power at - vision-ur-out-out-out-out-out-out-out-out-out-out							
powerai-visio	n-ui:							
Container I	0: docker://67dd58b776000c7441d3bd54cc3a20a1143299c11b401306a01ef0c98bfbd396							
Image:	powerai-vision-ui:1.1.3.0							
Image ID:	docker://sha256:c20d081782819000963c24ecb1019dbe4209f581904420bb3a8c77e775c0c614							
Port:	80/TCP							
Host Port:								
State: Startod:	Kunning Tuo 12 May 2010 07:45:50 -0500							
Ready.								
Restart Cou	nt: 0							
Liveness:	http-get http://:http/powerai-vision/index.html delay=240s timeout=5s period=10s #success=1 #fa	ilure=3						
Readiness:	http-get http://:http/powerai-vision/index.html delay=5s timeout=1s period=10s #success=1 #fail	ure=3						
Environment								
CONTEXT_R	20T: <set 'context_root'="" 'powerai-vision-config's="" 0<="" config="" key="" map="" of="" td="" the="" to=""><td>ptional:</td><td>false</td></set>	ptional:	false					
DLAAS_API	SERVER: <pre><set 'dlaas="" 'poweral-vision-config'="" api="" config="" key="" map="" of="" server'="" the="" to=""> 0 SERVER: </set></pre>	ptional:	false					
SERVER_HU	SI_VIDED_LESI: Set to the key SERVER_HOSI_VIDED_LESI of config map poweral-vision-config > 0	ptional:	false					
WFBROOT V	DEC TEST: <set 'powerai-vision-config'="" 'werroot="" 0<="" config="" key="" map="" of="" td="" test'="" the="" to="" video=""><td>ntional:</td><td>false</td></set>	ntional:	false					
Mounts:								
/opt/powe	rai-vision/data from data-mount (rw)							
/var/run/	secrets/kubernetes.io/serviceaccount from default-token-grhcc (ro)							
Conditions:								
lype	Status							
Ready								
ContainersRea	dv True							
PodScheduled	True							
Volumes:								
data-mount:								
Type:	PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)							
ClaimName:	powera1-v1s1on-data-pvc							
default_token								
	Secret (a volume populated by a Secret)							
SecretName:	default-token-grhcc							
Optional:	false							
QoS Class:	BestEffort							
Node-Selectors:	beta.kubernetes.io/arch=ppc641e							
Iolerations:	node.kubernetes.lo/not-ready:NoExecute for 300s							
Events.	noue.kupernetes.10/unredChdDie:NOExecule for 300S							
LVCIILS.	-none-)						

Interpreting the output

Significant fields providing status of the application pods include:

- Information about the product name and version are given in **productName** and **productVersion**.
- The Status field should be Running. Any other status indicates problems with the application pod.

• If there are issues with a pod, the **Events** section of the pod should have information about problems encountered.

Checking Kubernetes storage status

The PowerAI Vision application requires disk storage for activities including data set storage. The disk space requirements are described using Kubernetes Persistent Volume configuration. The kubectl command can be used to examine the *pv* (PersistentVolume) and *pvc* (PersistentVolumeClaims) resources.

Note: The storage requirements described in the **PersistentVolume** and **PersistentVolumeClaims** are not enforced in the standalone deployment. Therefore, the requested space might not be available in the underlying storage of the system. See "Disk space requirements" on page 14 for information about product storage requirements.

- "Using kubectl get pv and pvc commands"
- "Using the kubectl describe pv command"
- "Using the kubectl describe pvc command" on page 42

Using kubectl get pv and pvc commands

The kubectl get pv and kubectl get pvc commands can be used to see what PersistentVolume and PersistentVolumeClaim have been defined for the application.

Example output

(#/opt/powerai-vision	/bin/kubect	l.sh get pv									
NAME	CAPACITY	ACCESS MODES	RECLAIM	POLICY	STAT	US	CLAIM			STORAGECLASS	REASON
powerai-vision-data	40Gi	RWX	Retain		Boun	d	default	/powerai-vision·	-data-pvc		
# /opt/powerai-vision/bin/kubectl.sh get pvc											
NAME	STATUS	VOLUME		CAPACI	ΤY	ACCESS	MODES	STORAGECLASS	AGE		
powerai-vision-data-p	vc Bound	powerai-vi	sion-data	40G i		RWX			48d)	

Interpreting the output

The above output shows information about the Persistent Volume and Persistent Volume Claim for PowerAI Vision. The application currently has a capacity claim of 40G and it is successfully "Bound". If the **STATUS** is not "Bound", the application does not have access to the necessary storage.

Using the kubectl describe pv command

The kubectl describe pv command is used to see detailed information about the Persistent Volume used by the application.

Example output

(
# /opt/powerai-v	ision/bin/kubect	l.sh describe	pv					
NAME	CAPACITY	ACCESS MODES	RECLAIM POLICY	STATUS	CLAIM	STORAGECLAS	S REASON	AGE
powerai-vision-d	lata 40Gi	RWX	Retain	Bound	default/powerai-vision-data-pvc			480
[root@d]f01 ~]#	/opt/powerai-vis	ion/bin/kubect	l.sh describe pv					
Name:	powerai-vision-	data						
Labels:	assign-to=power	rai-vision-data						
	type=local							
Annotations:	pv.kubernetes.i	o/bound-by-con	troller=ves					
StorageClass:	I		Ū					
Status:	Bound							
Claim:	default/powerai	-vision-data-p	vc					
Reclaim Policy:	Retain							
Access Modes:	RWX							
Capacity:	40Gi							
Message:								
Source:								
Type: HostP	ath (bare host d	lirectory volum	e)					
Path: /ont/	nowerai-vision/v	olume/	-,					
Fvents: <none< td=""><td>></td><td>0 1 0</td><td></td><td></td><td></td><td></td><td></td><td></td></none<>	>	0 1 0						

Interpreting the output

The above output shows more details about the Persistent Volume used by the application. The **Source**section has the critical configuration values for **Type** and **Path**. The **Events** section will have information about Error events if there were issues with the Persistent Volume.

Using the kubectl describe pvc command

The kubectl describe pvc command is used to see detailed information about the Persistent Volume Claim for the application.

Example output

```
[root@dlf01 ~]# /opt/powerai-vision/bin/kubectl.sh describe pvc
Name:
               powerai-vision-data-pvc
Namespace:
               default
StorageClass:
Status:
               Bound
               powerai-vision-data
Volume:
Labels:
               app=powerai-vision
               chart=ibm-powerai-vision-prod-1.1.0
               heritage=Tiller
               release=vision
Annotations:
               pv.kubernetes.io/bind-completed=yes
               pv.kubernetes.io/bound-by-controller=yes
Capacity:
               40Gi
              RWX
Access Modes:
Events:
               <none>
```

Interpreting the output

The above output shows more details about the Persistent Volume Claim used by the application. The **Volume** section references the underlying Persistent Volume, and the **Status** should be "Bound" if it has been successfully allocated to the application. The **Events** section will show if there were issues with the Persistent Volume Claim.

Checking application deployment

PowerAI Vision processes require a Kubernetes environment. Use these commands to verify that the Kubernetes environment was deployed correctly and that all nodes are configured appropriately.

- "helm.sh"
- "kubectl describe deployment" on page 45

helm.sh

The helm.sh command shows the status of the full Kubernetes environment of the PowerAI Vision application.

Example output

/opt/powerai-vision/bin/helm.sh status vision LAST DEPLOYED: Tue Mar 12 07:44:55 2019 NAMESPACE: default STATUS: DEPLOYED **RESOURCES:** ==> v1beta1/Ingress NAMF HOSTS ADDRESS PORTS AGF powerai-vision-ing 80 3d4h * ==> v1/Pod(related) NAMF READY STATUS RESTARTS AGE powerai-vision-fpga-device-plugin-bg69p 1/1Running 0 3d4h 3d4h powerai-vision-keycloak-7df657794b-6v4pb 1/1Running 0 powerai-vision-mongodb-6cdc4b654b-c7g99 1/13d4h Running 0 powerai-vision-portal-7fb5d5d66-6tk45 1/1Running 0 3d4h Running 0 3d4h powerai-vision-postgres-54d6dbdcf4-zp27c 1/1powerai-vision-taskanaly-54bf4f658f-b2hzw 1/1Running 0 3d4h powerai-vision-ui-85494f77f7-9wg68 1/1Running 0 3d4h powerai-vision-video-nginx-84f4dd84f6-k4tf2 0 3d4h 1/1Running powerai-vision-video-portal-59678d77fb-f4qxv 1/13d4h Running 0 3d4h powerai-vision-video-rabmg-bb8f588c6-k9spc 1/1Running 0 powerai-vision-video-redis-5dcf7f4b74-q6v86 1/1Running 0 3d4h powerai-vision-video-test-nginx-7fb6ff6dd9-b7vz1 1/1Running 0 3d4h powerai-vision-video-test-portal-5988b6d66-vpvvk 1/10 3d4h Running Running powerai-vision-video-test-rabmq-7c55648476-d7154 0 3d4h 1/1Running 0 powerai-vision-video-test-redis-f64c589f8-rkzf7 1/13d4h ==> v1/Secret NAME TYPE DATA AGE 3d4h powerai-vision-secrets Opaque 6 ==> v1/ConfigMap NAME DATA AGE powerai-vision-config 3d4h 52 ==> v1/PersistentVolumeClaim NAMF STORAGECLASS AGE STATUS VOLUME CAPACITY ACCESS MODES powerai-vision-data powerai-vision-data-pvc Bound 40Gi RWX 3d4h ==> v1/Service EXTERNAL-IP PORT(S) NAME TYPE CLUSTER-IP AGE ClusterIP 8080/TCP,8443/TCP powerai-vision-keycloak 10.10.0.149 <none> 3d4h powerai-vision-mongodb ClusterIP 10.10.0.119 <none> 27017/TCP 3d4h ClusterIP 10.10.0.94 9080/TCP 3d4h powerai-vision-portal <none> powerai-vision-postgres ClusterIP 10.10.0.114 <none> 5432/TCP 3d4h powerai-vision-taskanaly ClusterIP 10.10.0.165 <none> 5000/TCP 3d4h 10.10.0.30 powerai-vision-ui ClusterIP <none> 80/TCP 3d4h ClusterIP 10.10.0.154 8081/TCP 3d4h powerai-vision-video-nginx <none> 8080/TCP.8081/TCP powerai-vision-video-portal ClusterIP 10.10.0.27 3d4h <none> powerai-vision-video-rabmq ClusterIP 10.10.0.87 <none> 5672/TCP 3d4h powerai-vision-video-redis ClusterIP 10.10.0.66 <none> 6379/TCP 3d4h powerai-vision-video-test-nginx ClusterIP 10.10.0.138 <none> 8083/TCP 3d4h 10.10.0.89 8080/TCP,8081/TCP 3d4h powerai-vision-video-test-portal ClusterIP <none> ClusterIP 3d4h powerai-vision-video-test-rabmg 10.10.0.11 <none> 5672/TCP powerai-vision-video-test-redis ClusterIP 10.10.0.232 <none> 6379/TCP 3d4h ==> v1beta1/DaemonSet NAME NODE SELECTOR DESTRED CURRENT RFADY UP-TO-DATE AVAILABLE AGF powerai-vision-fpga-device-plugin 1 1 1 1 1 <none> 3d4h ==> v1/Deployment NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE powerai-vision-keycloak 1 1 1 1 3d4h powerai-vision-mongodb 3d4h 1 1 1 1 3d4h powerai-vision-portal 1 1 1 1 3d4h powerai-vision-postgres 1 1 1 1 3d4h

1

powerai-vision-taskanaly

1

1

1

/	powerai-vision-ui	1	1	1	1	3d4h	-	
	powerai-vision-video-nginx	1	1	1	1	3d4h		
	powerai-vision-video-portal	1	1	1	1	3d4h		
	powerai-vision-video-rabmq	1	1	1	1	3d4h		
	powerai-vision-video-redis	1	1	1	1	3d4h		
	powerai-vision-video-test-nginx	1	1	1	1	3d4h		
	powerai-vision-video-test-portal	1	1	1	1	3d4h		
	powerai-vision-video-test-rabmq	1	1	1	1	3d4h		
	powerai-vision-video-test-redis	1	1	1	1	3d4h		
	NOTES:							
	Find the PowerAI Vision UI URL by	running	g the fo	ollowing com	nmands:			
	<pre>export NODE_IP=\$(kubectl get ing</pre>	powerai-	-vision-	ingname	space default	-o jsonpath="{.sta	tus.loadBalancer.ing	ress[0].ip}")
l	<pre>echo https://\${NODE_IP}/powerai-v</pre>	ision/						

Important fields in the output

STATUS

The value for STATUS should be DEPLOYED after a successful installation.

RESOURCES

The status of individual Kubernetes pods is displayed in this section. The CURRENT and AVAILABLE values for each pod should be equal to or greater than the DESIRED value.

```
RESOURCES:<br/>==> v1beta1/DeploymentDESIRED CURRENT UP-TO-DATE AVAILABLE AGENAMEDESIRED CURRENT UP-TO-DATE AVAILABLE AGE...<br/>powerai-vision-portal11111
```

kubectl describe deployment

The kubectl describe deployment command provides verbose status information about each of the deployed nodes in the Kubernetes environment that is being used to run PowerAI Vision.

Example output

The following shows the output from one of the nodes. The full output for all nodes is much longer and has similar entries for each node.

# /opt/powerai-	vision/b	in/kubectl.sh describe deployment			
Name:		powerai-vision-ui			
Namespace:		default			
CreationTimesta	:am	Tue. 12 Mar 2019 07:45:02 -0500			
Labels:		app=powerai-vision			
		chart=ibm-powerai-vision-prod-1.3.0			
		heritage=Tiller			
		release=vision			
		run=powerai-vision-ui-deployment			
Annotations:		deployment.kubernetes.io/revision: 1			
Selector:		run=powerai-vision-ui-deployment-pod			
Replicas:		1 desired 1 updated 1 total 1 available 0 unavailable			
StrategyType:		RollingUpdate			
MinReadySeconds	:	0			
RollingUpdateSt Pod Template:	rategy:	25% max unavailable, 25% max surge			
Labels:	app=powe	erai-vision			
	chart=i	<pre>ym-powerai-vision-prod-1.3.0</pre>			
	componer	lt=powerai-vision-ui			
	heritage	₂=Tiller			
	release	=vision			
	run=powe	<pre>srai-vision-ui-deployment-pod</pre>			
Annotations:	checksur	n/config: 94cf7f105d3b90aa74290ec94b53065f919b35c0d3048d399ebac408cf035679			
	product	D: 5737-H10			
	product	Name: IBM PowerAI Vision			
o	product	/ersion: 1.1.3.0			
containers:					
poweral-visi	on-u1:	vision vist 1.2.0			
Image:	poweral.	·vision-ui:1.1.3.0			
Port: Host Dont:	00/ICP				
liveness:	bttp_got	t http://.http/nowersi_vision/index.html delay=240s timeout=Es period=10s #success=1 #fail	uro-3		
Peadiness.	http-gei	, http://.http/poweral_vision/index.html delay_Est images period=10s #success=1 #failur	a=3		
Environment	•		C-3		
CONTEXT R	ООТ•	<pre><set 'context="" 'nowerai-vision-config'="" config="" key="" map="" of="" root'="" the="" to=""></set></pre>	Ontio	nal·	false
	SFRVFR	<pre>set to the key 'DIAAS API SERVER' of config man 'poweral-vision-config'></pre>	Ontio	nal·	false
SERVER HO	ST VIDEO	TEST: <set 'powerai-vision-config'="" 'server="" config="" host="" key="" map="" of="" test'="" the="" to="" video=""></set>	Optio	nal:	false
SERVICE P	ORT VIDE) TEST: <set 'powerai-vision-config'="" 'service="" config="" key="" map="" of="" port="" test'="" the="" to="" video=""></set>	Optio	nal:	false
WEBROOT V	IDEO TEST	: <set 'powerai-vision-config'="" 'webroot="" config="" key="" map="" of="" test'="" the="" to="" video=""></set>	Optio	nal:	false
Mounts:	· - ·				
/opt/power	rai-visio	on/data from data-mount (rw)			
Volumes:					
data-mount:					
Type:	Persiste	entVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)			
ClaimName:	powerai.	-vision-data-pvc			
ReadOnly:	false				
Conditions:					
Туре	Status	Reason			
 Available	 Twu o				
Available	True				
AldRenlicsSoter	<nona></nona>	nemnepi i cube invati abi e			
NewRenlicaSet.	nowerat	i-vision-ui-85494f77f7 (1/1 renlicas created)			
Events:	<none></none>				
	nonce				

Interpreting the output

• The **Replicas** line shows information regarding how many images are desired and available (similar to the output from kubectl get pods):

Replicas: 1 desired | 1 updated | 1 total | 1 available | 0 unavailable

The "available" value should be equal to the "desired" value.

- The **productVersion** value indicates the level of PowerAI Vision installed: productVersion=1.1.1.0
- The **Image** value provides information about the Docker container: Image: powerai-vision-ui:1.1.1.0

• The **Conditions** section has important information about the current status of the image, and any reasons if the status is "failure".

Checking system GPU status

In PowerAI Vision, GPUs are used to train and deploy models. Use these commands to verify that GPUs are set up and available.

nvidia-smi

The nvidia-smi command is a NVIDIA utility, installed with the CUDA toolkit. For details, see "Prerequisites for installing PowerAI Vision" on page 19. With nvidia-smi, you can view the status of the GPUs on the system.

Example output

(# nvidia-smi Fri Mar 15 12:23:50 2019											
	NVID	IA-SMI	418.2	.9	Driver	Version:	418	.29	CUDA Versi	on: 10.1	
	GPU Fan	Name Temp	Perf	Persist Pwr:Usa	ence-M ge/Cap	Bus-Id	Mem	Disp.A ory-Usage	Volatile GPU-Util	Uncorr. Compute	ECC M.
	0 N/A	Tesla 50C	P100- P0	SXM2 109W /	0n 300W	00000002 2618M	2:01 iB /	:00.0 Off 16280MiB	43%	Defa	0 ault
	1 N/A	Tesla 34C	P100- P0	SXM2 34W /	0n 300W	00000000 0M	3:01 iB /	:00.0 Off 16280MiB	0%	Defa	0 ault
	2 N/A	Tesla 48C	P100- P0	SXM2 44W /	0n 300W	00000000 5007M	A:01 iB /	:00.0 Off 16280MiB	0%	Defa	0 ault
	3 N/A	Tesla 36C	P100- P0	SXM2 33W /	0n 300W	00000000 0M	B:01 iB /	:00.0 Off 16280MiB	0%	Defa	0 ault
+++++++											
	Proce GPU	esses:	PID	Туре	Process	s name				GPU Men Usage	nory
	 0	114	4476	C	/opt/mi	iniconda2,	/bin	/python		2608	3MiB
ļ	2	114	1497	С	/opt/mi	iniconda2,	/bin	/python		958	3MiB
ļ	2	114	4519	С	/opt/mi	iniconda2,	/bin	/python		958	3MiB
	2	116	5655 5656	C	/opt/mi	iniconda2,	/bin /bin	/python /python		2121	LM1B RMib
 +											4

Interpreting the output

The above output shows the following:

- The system has 4 (0-3) Tesla P100 GPUs.
- In the last portion of the output, it shows that GPU **0** has a process deployed and running. This can indicate a PowerAI Vision training task or a deployed model. Any GPUs with running jobs are not available for training jobs or deployment of trained models from the user interface. The output also shows multiple processes running on GPU 2, which can indicate that multiple models deployed for inferencing are sharing that GPU resource.
- The output should correctly display the memory configuration of the GPUs. For example, "Unknown error" indicates an issue with the driver setup or configuration. See "GPUs are not available for training or inference" on page 115 for more information.

Logging in to PowerAl Vision

Follow these steps to log in to PowerAI Vision.

Note: PowerAI Vision is supported on these browsers:

- Google Chrome Version 60, or later
- Firefox Quantum 59.0, or later
- 1. Enter the appropriate PowerAI Vision URL in a supported browser:

PowerAI Vision stand-alone URL

https://hostname/powerai-vision/, where *hostname* is the system on which you installed PowerAI Vision.

PowerAI Vision with IBM Cloud Private URL

https://proxyhost/powerai-vision-RELEASE/, where *proxyhost* is the host name of your IBM Cloud Private proxy server, and *RELEASE* is the name you specified in the Release name field when you deployed the Helm chart.

2. Enter your user name and password. A default user name (admin) and password (passw0rd) was created at install time. For instructions to change these values, see "Managing users" on page 95.

Related concepts:

"Managing users" on page 95

There are two kinds of users in PowerAI Vision: administrators, and everyone else. The way you work with users and passwords differs, depending on how PowerAI Vision is installed.

Working with the user interface

The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the action bar, the data area, and the notification center.

Interface areas

The user interface is made up of several different areas:

Figure 7. PowerAl Vision user interface

1: The navigation bar

The navigation bar lets you choose a work space, access the notification area, or work with your profile.

2: The header bar

The header bar on the Training, Models, Model details, and Deployed Models pages shows GPU usage details in these categories:

Training

GPUs currently used for training jobs by PowerAI Vision.

Deployed Models

GPUs currently used for deployed models by PowerAI Vision.

Note: If the output shows "Unknown", then GPUs are in use, but not for PowerAI Vision training or deployment. This either indicates an issue with a GPU in use by a training or deploy job that failed unexpectedly, or there are other applications on the system using GPUs. This could lead to unexpected resource contention and application issues.

3: The action bar

This is where you find the actions that you can take on images, videos, data sets, and models in the current data area. The available actions differ depending on what type of object you are working with.

4: The side bar

Data sets and models have a side bar with filtering options. Filtering helps you specify which objects to include in the data area.

Navigating: If the side bar is long, for example, if you have a data set with a lot of different types of objects, you can scroll through the side bar content. To scroll, hover over the appropriate

content and use your mouse roller or keyboard arrow keys. If the mouse pointer is right over the categories, for example, scrolling moves you through that list. If the mouse pointer is further to the right, on the edge of the side bar, scrolling moves you through all of the content on the side bar.

5: The data area

This is where you find the objects that you can act on. It lists the objects of the selected type, or displays the data included in the data set.

Filtering

With large data sets, you might need to filter the files that are shown in the data area. By default, your whole data set is shown.

Filter by Images / Videos

When you deselect a file type, those files are no longer shown in the data area. Therefore, if you only have Images selected, only images are shown in the data area.

Categories / objects

When you select categories and / or objects, *all* files of the specified type that belong to any of the selected categories, or contain the selected objects, are shown.

For example, assume you have a data set with two categories: Cats and Dogs. Also assume that you tagged these types of objects: Face, Collar, and Tail. Then if you select Images, the category Dogs, and the object Collar, you will see all images that are dogs *or* contain a collar. This will include images of cats if they have a collar as well as images of dogs with no collar.

Using filtering and "Select all" with video data

When you capture frames from a video, these frames always maintain a child / parent relationship with the original video. That has some selection and filtering implications.

- When using the filter on the side bar, if *any* video frame matches the filter criteria, both the frame and its parent video are selected and are shown in the data area.
- If you click the "Select" box in the action bar, everything in the data area is selected. Therefore, if there is a video shown in the data area, it, and all of its child frames, are selected. Any action performed in this situation applies to all selected images, the video, and all of its child frames.

Example

A user has captured 50 frames from a video file Cars Video. Fourteen frames of the 50 have no labels.

- 1. The user selects **Unlabeled** in the Objects filter in the sidebar. The 14 frames with no labels and their parent video, Cars Video, are shown in the data area.
- 2. The user clicks **Select** in the action bar. The frames and the video are all selected.
- **3**. The user clicks **Delete**, intending to delete the unlabeled frames. However, because the video was selected, it, and the 36 labeled frames, are also deleted.

To delete only the unlabeled frames, the user should click **Select** in the action bar to quickly select all 14 frames, then deselect the video file before clicking **Delete**.

Deleting items

In general, to delete items, you select and delete the files. However, because video frames always maintain a child / parent relationship with the original video, when you select a video for deletion, the video *and* all of the frames are deleted. You can delete frames and leave the video, but you cannot delete the video and leave the frames.

The notification area

Click the bell icon in the navigation bar to access the notification area. This allows you to view and work with messages. Click the arrow to return to your previous view.

Figure 8. Notification area

Related concepts:

"Training and working with models" on page 55 Use these processes to create, deploy, and refine models.

"Scenario: Detecting objects in a video" on page 86

In this fictional scenario, you want to create a deep learning model to monitor traffic on a busy road. You have a video that displays the traffic during the day. From this video, you want to know how many cars are on the busy road every day, and what are the peak times that have the most cars on the road.

Related tasks:

"Training a model" on page 62

After the data set has all of the object labels added, you can train your deep learning model. Trained models can then be deployed for use.

"Creating and working with data sets" on page 55

Before you can work with videos or images, you need to create a data set. A data set is a group of images, videos, or both that you will use to train a deployable model.

"Deploying a trained model" on page 73

Deploy a trained model to get it ready to use within PowerAI Vision or a different program, such as IBM PowerAI. Deploying a model creates a unique API endpoint based on that model for inference operations.

"Scenario: Classifying images" on page 91

The goal of this example is to train a model to classify images of birds into groups based on their physiological similarities. Once the model is trained with a known dataset, users can upload new data sets to auto classify the birds into their respective categories. We will prepare the data, create a data set, train the model, and test the model.

Training and working with models

Use these processes to create, deploy, and refine models.

You can only see and work with objects (data sets, files, trained models, and deployed models) that you own. An object is owned by the user who created it.

Creating and working with data sets

Before you can work with videos or images, you need to create a data set. A data set is a group of images, videos, or both that you will use to train a deployable model.

To create a data set and add content to it, follow these steps:

- 1. Log in to PowerAI Vision.
- 2. Click **Data Sets** in the navigation bar to open the Data Sets page. There are several ways to create a new data set:
 - To create an empty data set, click **Create new data set**.
 - If you have a previously exported data set, click Import .zip file.
 - If you want to copy an existing data set, select the data set and click Duplicate.

Notes:

• PowerAI Vision has limited support for Pascal VOC annotations. Annotations for multiple files residing in a common XML file are not supported. In other words, each annotation XML file can only contain annotations for a single image, identified by the filename attribute.

If you have a single XML annotation file containing annotations for multiple images in the data set to be imported, the annotations need to be split out into separate XML files before PowerAI Vision can import the annotations successfully.

• PowerAI Vision supports importing COCO data sets with the following limitations:

Only "object detection" annotations are supported. You can review the annotation format on the COCO data format page. When you import images with COCO annotations, PowerAI Vision only keeps the information it will use, as follows:

- PowerAI Vision extracts the information from the images, categories, and annotations lists and ignores everything else.
- Unused annotations are not saved. For example, if there is annotation information for clock, but no image is tagged with a clock, then the clock object (called *category* in COCO) is not saved.
- For COCO annotations that use the RLE format, the RLE is not saved. Only the bounding box is used.

Note: Images without tags are saved.

3. Click the data set you just created to open it. Add images and videos by using **Import file** or by dragging them to the + area. If you do not follow these considerations, your upload will fail and a message will be shown on the screen. For details about why the upload failed, click the bell icon at the top of the page to open the Notifications center.

Upload considerations:

- You can select multiple image or video files, or a single .zip file that contains images and videos, but you cannot upload a folder that contains images or videos.
- You cannot navigate away from the PowerAI Vision page or refresh until the upload completes. You can navigate to different pages within PowerAI Vision during the upload.

• There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files. You can, however upload 24 GB of files, then upload more after the original upload completes.

Working with data sets

After your data set has been created, select it in the Data Sets page to duplicate, rename, delete it, and so on. To work with the images and videos contained in the data set, click the name of the data set to open it.

Working with video data and captured frames

In general, to delete items, you select and delete the files. However, because video frames always maintain a child / parent relationship with the original video, when you select a video for deletion, the video *and* all of the frames are deleted. You can delete frames and leave the video, but you cannot delete the video and leave the frames.

Data set considerations

When preparing a data set for training, consider the following information to ensure the best results.

Note: Unless otherwise noted, mentions of "images" refers to both individual images and captured video frames.

- "What are the limitations on uploaded files?"
- "How many images are needed?" on page 57
- "Special considerations for object detection models" on page 57

What are the limitations on uploaded files?

- The following image formats are supported:
 - JPEG
 - PNG
- You can play only the following video types in PowerAI Vision:
 - Ogg Vorbis (.ogg)
 - VP8 or VP9 (.webm)
 - H.264 encoded videos with MP4 format (.mp4)
- The models used by PowerAI Vision have limitations on the size and resolution of images. If the original data is high resolution, then the user must consider:
 - If the images do not need fine detail for classification or object detection, they should be down-sampled to 1-2 megapixels.
 - If the images do require fine detail, they should to be divided into smaller images of 1-2 megapixels each.
 - High resolution images will be scaled to a maximum of 1000 x 600 pixels.
 - For image classification, images are scaled to 224 x 224 pixels.
 - For object detection with Detectron, all images are scaled to 1333 x 800 pixels.
 - For object detection with tiny YOLO V2, all images are scaled to 416 x 416. However, the original aspect ratio is maintained. That is, the longest edge is scaled to 416 pixels and, if necessary, black bands are added to the shorter side to make it 416 pixels.
 - For object detection with FR-CNN, image segmentation, or video, anything over 1000 x 600 pixels is down-sampled so that the longest edge will fit.
 - There is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files. You can, however upload 24 GB of files, then upload more after the original upload completes.

• Images with COCO annotations are supported. For details, see "Importing images with COCO annotations" on page 58.

How many images are needed?

A data set with a variety of representative objects labeled will train a more accurate model. The exact number of images and objects cannot be specified, but some guidelines recommend as many as 1,000 representative images for each class. However, you might not need a data set this large to train a model with satisfactory accuracy. The number of images required depends on the kind of training you plan on doing:

Image classification

- There must be at least two categories.
- Each category must have at least five images.

Object detection

The data set must contain at least five images with an object labeled for each defined object. For example, if you want to train the data set to recognize cars and you have three images and one video, you must add the "car" label to each image and at least two frames of the video. Labeling five cars in one image is not adequate. If this requirement is not met and you train the model, it will not be trained to recognize that type of object.

Important: Not all of the images in a data set are used for training. Assuming that you did not change the value for Ratio (an advanced hyperparameter setting) when training your model, 20% of the images are randomly selected and used for validation instead of training. Because of this, it is important that you have enough images of every category or object.

For example, consider a data set to be used for training of an object detection model that has 200 images. With the default configuration for model training, 20% of the images (40 images) will be selected for testing the model. If there is a label **LabelA** used to identify an object in the data set, the following scenarios are possible if the number of images labeled with the object are smaller than the test data set, for example, if there are only 20 images with objects labeled as **LabelA**:

- It is possible that all of the images with **LabelA** are in the "training" data set, and none of the images are actually used for testing of the model. This will result in *unknown* accuracy for **LabelA**, since there are no tests of the accuracy.
- Similarly, it is possible that all 20 images with **LabelA** objects are in the test data set but there are no images used for training. This will result in very low or 0% accuracy for the object because the model was not actually trained with any images containing the **LabelA** objects.

If your data set does not have many images or sufficient variety for training, consider using the Augmentation feature to increase the data set.

Special considerations for object detection models

Accuracy for object detection models can be more challenging since it includes intersection over union (IoU), especially for models that use segmentation instead of bounding boxes. IoU is calculated by the intersection between a ground truth bounding box and a predicted bounding box, divided by the union of both bounding boxes; where the intersection is the area of overlap, a *ground truth* bounding box is the hand drawn box, and the *predicted bounding box* is the one drawn by PowerAI Vision.

In the case of object detection, the object might have been correctly identified but the overlap of the boundary generated by the model is not accurate resulting in a poor IoU metric. This metric might be improved by more precise object labeling to reduce background "noise", by training the model longer, or both.

Importing images with COCO annotations

Images with Common Objects in Context (COCO) annotations have been labeled outside of PowerAI Vision. You can import (upload) these images into an existing PowerAI Vision data set, along with the COCO annotation file, to inter-operate with other collections of information and to ease your labeling effort.

Only "object detection" annotations are supported. You can review the annotation format on the COCO data format page. When you import images with COCO annotations, PowerAI Vision only keeps the information it will use, as follows:

- PowerAI Vision extracts the information from the images, categories, and annotations lists and ignores everything else.
- Unused annotations are not saved. For example, if there is annotation information for clock, but no image is tagged with a clock, then the clock object (called *category* in COCO) is not saved.
- For COCO annotations that use the RLE format, the RLE is not saved. Only the bounding box is used.

Note: Images without tags *are* saved.

To import images with COCO annotations into PowerAI Vision, follow these steps:

- 1. If necessary, create a new data set. The data set must exist before importing the COCO annotated data.
- 2. Download the images that you want to import.
- **3.** If you downloaded train2017.zip, PowerAI Vision cannot train the entire data set. Therefore, you must make a new file that contains just the images you want to train. For example, by running this command:

ls train2017 | grep jpg | head -20000 >/tmp/flist

4. Download the annotations file for your images. For example, annotations_trainval2017.zip contains the annotations for the train2017 data set. For example, if you downloaded annotations_trainval2017.zip, extract the annotations/instances_train2017.json file, which is the COCO annotation file for object detection.

If you are using a .json file from a different source, it cannot be called prop.json.

- 5. Create a zip file that contains the annotations file and the images.
 - There can be only one .json file in the zip file. If more that one .json file is discovered, only the first one is used.
 - The .json file cannot be named props.json because this is used by PowerAI Vision exported data sets, which use different annotations.
 - The images and the annotation file can reside in different directories.
- 6. Import the zip file into an existing PowerAI Vision data set.

Note: COCO data sets are created for competition and are designed to be challenging to identify objects. Therefore, do not be surprised if the accuracy numbers achieved when training are relatively low, especially with the default 4000 iterations. However, these data sets will allow you to experiment with segmentation training and inference without having to manually label a lot of images

For details about COCO data sets, refer to the COCO web site.

Labeling objects

One of the most important steps is to ensure that you properly label objects by adding tags to your data.

Requirements

Recommendation: Label and class names should be 64 characters or less. Longer label names are supported but using international characters or very long label names can cause an internal metadata error, resulting in a training failure.

Image classification

- There must be at least two categories.
- Each category must have at least five images.

Object detection

The data set must contain at least five images with an object labeled for each defined object. For example, if you want to train the data set to recognize cars and you have three images and one video, you must add the "car" label to each image and at least two frames of the video. Labeling five cars in one image is not adequate. If this requirement is not met and you train the model, it will not be trained to recognize that type of object.

Note: A data set with a variety of representative objects labeled will train a more accurate model. The exact number of images and objects cannot be specified, but some guidelines recommend as many as 1,000 representative images for each class. However, you might not need a data set this large to train a model with satisfactory accuracy.

If your data set does not have many images or sufficient variety for training, consider using the Augmentation feature to increase the data set.

- "Labeling videos"
- "Labeling images" on page 61

Labeling videos

- 1. Select the video from your data set and select Label Objects.
- 2. Capture frames by using one of these options:
 - Auto capture frames PowerAI Vision captures a video frame every *n* seconds, where *n* is specified in the Capture Interval (seconds) field.

Note:

- Depending on the length and size of the video and the interval you specified to capture frames, the process to capture frames can take several minutes.
- When performing multiple auto label operations on the same video, it is possible to get multiple frames with the same time offset. This situation can occur when the intervals overlap and labels have been edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at each of the 10 second intervals with edited labels.

• Manually capture frames - use Capture frame to capture relevant frames.

Note: When you capture frames from a video, these frames always maintain a child / parent relationship with the original video.

- **3**. If required, manually add new frames to an existing data set. This might happen if **Auto capture frames** does not produce enough frames with a specific object type. To manually add new frames, follow these steps:
 - a. Play the video and when the frame you want is displayed, click the pause icon.

Tip: You can use the video player's status bar to find a frame you want.

b. Click Capture Frame.

4. Create new object labels for the data set by clicking **Add new** by the Objects list. To add multiple object labels, enter one label, click **Add**, then enter the next until you are done. Label names cannot contain any special characters other than the underscore (_). For example, characters such as these are not allowed: -"/ \ | { } () ; :,

Note: If non-ASCII characters are used in the label name, they will not be displayed correctly when using a video to test the deployed model. See "Testing a model" on page 74. You can rename objects later. However, after you rename an object, you will no longer be able to undo actions done before the rename.

- 5. Label the objects in the frames by following these steps.
 - **a**. Select the first frame in the carousel.
 - b. Select the correct object label.
 - c. Choose **Box** or **Polygon** from the bottom left, depending on the shape you want to draw around each object. Boxes are faster to label and train, but less accurate. Only Detectron models support polygons. However, if you use polygons to label your objects, then use this data set to train a model that does not support polygons, bounding boxes are defined and used. Draw the appropriate shape around the object.

Tip: The **Paste previous** button is active if there is at least one frame before the current frame being edited. Clicking **Paste previous** copies all the labels from the previous video frame and paste them into the current frame.

Follow these guidelines when identifying and drawing objects in video frames:

- Do not label part of an object. For example, do not label a car that is only partially in the frame.
- If an image has more than one object, you must label all objects. For example, if you have cars and motorcycles defined as objects for the data set, and there is an image with both cars and motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the accuracy of the model.
- Label each individual object. Do not label groups of objects. For example, if two cars are right next to each other, you must draw a label around each car.
- Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
- You can draw shapes around objects that touch or overlap. For example, if one object is behind another object, you can label them both. However, it is recommended that you only label objects if the majority of the object is visible.
- Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the right edge, you might have to click the left arrow key several times to start panning in the other direction.

- Shapes cannot extend off the edge of the frame.
- After defining a shape, you can copy and paste it elsewhere in the same image or in a different image by using standard keyboard shortcuts. After pasting the shape, it can be selected and dragged to the desired location in the image. The shape can also be edited to add or remove points in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in the image carousel. From the data set, select all images that will share shapes, then click **Label objects**. All images will be listed in the image carousel in the left side of the Label objects window.

• Labeling with polygons

- To delete a point from an outline, ctrl+click (or cmd+click).
- To add a point to an outline, click the translucent white square between any two points on the outline.

- To move a point on the outline, click it and drag.

Labeling images

Follow these steps to label images in your data set:

- Create new object labels for the data set by clicking Add new by the Objects list. To add multiple object labels, enter one label, click Add, then enter the next until you are done. Label names cannot contain any special characters other than the underscore (_). For example, characters such as these are not allowed: -"/ \ | { } () ; :,
- 2. Open an image. In the right pane, select the object you want to label.
- **3.** Choose **Box** or **Polygon** from the bottom left, depending on the shape you want to draw around each object. Boxes are faster to label and train, but less accurate. Only Detectron models support polygons. However, if you use polygons to label your objects, then use this data set to train a model that does not support polygons, bounding boxes are defined and used. Draw the appropriate shape around the object.
 - Do not label part of an object. For example, do not label a car that is only partially in the frame.
 - If an image has more than one object, you must label all objects. For example, if you have cars and motorcycles defined as objects for the data set, and there is an image with both cars and motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the accuracy of the model.
 - Label each individual object. Do not label groups of objects. For example, if two cars are right next to each other, you must draw a label around each car.
 - Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
 - You can draw shapes around objects that touch or overlap. For example, if one object is behind another object, you can label them both. However, it is recommended that you only label objects if the majority of the object is visible.
 - Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the right edge, you might have to click the left arrow key several times to start panning in the other direction.

- Shapes cannot extend off the edge of the frame.
- After defining a shape, you can copy and paste it elsewhere in the same image or in a different image by using standard keyboard shortcuts. After pasting the shape, it can be selected and dragged to the desired location in the image. The shape can also be edited to add or remove points in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in the image carousel. From the data set, select all images that will share shapes, then click **Label objects**. All images will be listed in the image carousel in the left side of the Label objects window.

- Labeling with polygons
 - To delete a point from an outline, ctrl+click (or cmd+click).
 - To add a point to an outline, click the translucent white square between any two points on the outline.
 - To move a point on the outline, click it and drag.

Objects panel

Click the settings icon on the right side of the Objects panel to change the labeling settings, such as whether to show object labels inside shapes, hide all shapes except the one being drawn, change the shape opacity, and so on. As you label objects, they are added to the list in the Objects panel on the right. To work with a labeled object, select it in the Objects panel. You can hide the object outline, rename it, or delete it.

To work with all objects of one type, such as cars, click the three dots to the right of the object title. These actions apply only to the items identified as this type of object in the current image.

Related tasks:

"Automatically labeling objects" on page 75

After deploying a model for object detection, you can improve its accuracy by using the Auto label function. This function improves the model's accuracy by quickly adding more data to the data set.

Training a model

After the data set has all of the object labels added, you can train your deep learning model. Trained models can then be deployed for use.

- 1. From the Data set page, click **Train**.
- 2. In the Train data set window, fill out the values as appropriate, then click Train:

Type of training

Image classification

Choose this if you want to use the model to categorize images as belonging to one of the types that you defined in the data set.

Note:

- There must be at least two categories.
- Each category must have at least five images.

Object detection

Choose this if you want to use the model to label objects within images.

Note: The data set must contain at least five images with an object labeled for each defined object. For example, if you want to train the data set to recognize cars and you have three images and one video, you must add the "car" label to each image and at least two frames of the video. Labeling five cars in one image is not adequate. If this requirement is not met and you train the model, it will not be trained to recognize that type of object.

Model selection

Select the model that you want to use:

System default (GoogLeNet)

Models trained with this model can only be run on a GPU. This option is only available when training for image classification.

Accuracy (Faster R-CNN)

Models optimized for accuracy can only be run on a GPU. This option is only available when training for object detection.

Speed (tiny YOLO V2)

Models optimized for speed can be run anywhere, but might not be as accurate as those optimized for accuracy. These models use "you only look once" (YOLO) V2 and will take several hours to train. This option is only available when training for object detection.

You will choose the accelerator to deploy to when deploying the model. You can choose GPU, CPU, or Xilinx FPGA - 16 bit (technology preview).

Segmentation (Detectron)

Detectron Mask R-CNN models can only be run on a GPU. They can use objects labeled with polygons for greater training accuracy. Labeling with polygons is

especially useful for small objects, objects that are at a diagonal, and objects with irregular shapes. However, training a data set that uses polygon labels takes longer than training with rectangular bounding boxes. If you want to use a Detectron model but want a shorter training time, you can disable segmentation and PowerAI Vision will use rectangles instead of polygons. The actual images are not modified, so you can train with segmentation later.

Custom model

Select an imported model to use for training.

Advanced options

Base model

You must select a base model when training for image classification with GoogLeNet. You can optionally choose a base model when training for object detection with Faster R-CNN.

When you specify a base model, PowerAI Vision uses the information in the base model to train the new model. This allows you to transfer learning that has already been done with one model to a new model, resulting in more accurate training. You can choose a model that is included with PowerAI Vision, or you can choose your own model that you previously trained or imported. For models that were trained in PowerAI Vision versions prior to 1.1.2, the list of associated objects or categories is not shown in the user interface. However, those models are still usable.

The base model's network must be Faster R-CNN (for object detection) or GoogLeNet (for image classification). Only viable models are listed in the Base model table.

Note: Base models are not available for tiny YOLO v2, Detectron, and custom models used for object detection, or custom models used for image classification.

PowerAI Vision comes with several common models such as flowers, food, and so on, that you can use to help classify your data. If you do not select a base model when training with GoogLeNet, General is used. For more information, see "Base models included with PowerAI Vision" on page 73.

Model hyperparameters

For advanced users, these setting are available to help fine-tune the training.

Max iteration

The maximum number of times the data is passed through the training algorithm, up to 1,000,000 iterations.

Momentum (Object detection only)

This value increases the step size used when trying to find the minimum value of the error curve. A larger step size can keep the algorithm from stopping at a local minimum instead of finding the global minimum.

Ratio PowerAI Vision automatically "splits" the data set for internal validation of the model's performance during training. The default Ratio value of 80/20 will result in 80% of the images in the data set (at random) being used for training, and 20% being used for measurement / validation.

Test iteration (Image classification only)

The number of times data is passed through the training algorithm before possible completion. For example, if this value is 100, and Test interval is 50, the model is run through the algorithm at least 100 times; being tested ever 50 times.

Test interval (Image classification only)

The number of times the model is passed through the algorithm before

testing. For example, if this value is 50, the model is tested every 50 iterations. Each of these tests becomes a data point on the metrics graphs.

Learning rate

This option determines how much the weights in the network are adjusted with respect to the loss gradient. A correctly tuned value can result in a shorter training time. However, it is recommended that only advanced users change this value.

Weight decay

This value specifies regularization in the network. It protects against over-fitting and is used to multiply the weights when training.

Note: If a training job appears to be hanging, it might be waiting for another training job to complete, or there might not be a GPU available to run it. For information to fix this, see "PowerAI Vision cannot train a model" on page 116.

3. (Optional - *Only supported when training for object detection*.) Stop the training process by clicking **Stop training** > **Keep Model** > **Continue**.

You can wait for the entire training model process complete, but you can optionally stop the training process when the lines in the training graph start to flatten out. This is because improvements in quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with Detectron), because larger iteration counts and training times have been demonstrated to improve accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can still being improved even when the accuracy of identifying the object location stopped improving.

Understanding the model training graph

As PowerAI Vision trains the model, the graph shows the relative performance of the model over time. The model should converge at the end of the training with low error and high accuracy.

In the figure, you can see the Loss CLS line and the Loss Bbox lines start to plateau. In the training graph, the lower the loss value, the better. Therefore, you can stop the training process when the loss value stops decreasing. The training model has completed enough iterations and you can continue to the next step.
Loss VS Iteration

Iteration

Figure 9. Model training graph

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have enough information. The same is true if the accuracy of the training graph fails to rise or the errors in the graph do not decrease at the end of the training process. For example, a model with high accuracy might be able to discover all instances of different race cars, but might have trouble differentiating between specific race cars or those that have different colors. In this situation, add more images or video frames to the data set, label them, then try the training again.

Related concepts:

"Understanding metrics" on page 79

PowerAI Vision provides several metrics to help you measure how effectively your model has been trained.

Working with custom models

You can save time and resources by using your own TensorFlow based custom models (also referred to as *custom networks*) with PowerAI Vision. In general, custom models work the same as any other model in PowerAI Vision. However, there are some differences you should understand.

When you upload a custom model to the Custom Models page, you can use the model to train a data set in PowerAI Vision and generate a PowerAI Vision trained model.

Note: Custom models cannot be used to import pre-trained models into PowerAI Vision. Additionally, transfer learning is not supported with custom models.

Use the information in this topic to prepare a PowerAI Vision trained model by using a custom TensorFlow model: "Preparing a model that will be used to train data sets in PowerAI Vision" on page 66.

This repository has examples with detailed instructions and sample files for using custom models.

Preparing a model that will be used to train data sets in PowerAl Vision

If your custom model will be used to train data sets in the PowerAI Vision framework, your custom model must meet the following requirements.

After the model is properly prepared, upload it to PowerAI Vision by opening the Custom Models page and clicking **Browse files**. You can then use it to train a data set. Follow these instructions to train a data set; selecting **Custom model**: "Training a model" on page 62.

Custom model requirements:

- It must be TensorFlow based.
- It must implement the MyTrain Python class.
 - The MyTrain implementation must reside in a file named train.py in the top level directory of the zip file contents.
 - The following import must be added to the train.py file in order to define the training callbacks:
 from train interface import TrainCallback
 - The class name must be MyTrain.

MyTrain Template:

```
class MyTrain(TrainCallback):
    def __init__():
        pass
    def onPreprocessing(self, labels, images, workspace_path, params):
        pass
    def onTraining(self, monitor_handler):
        pass
    def onCompleted(self, model_path):
        pass
    def onFailed(self, train_status, e, tb_message):
        pass
```

This repository has examples with detailed instructions and sample files for using custom models.

class MyTrain(TrainCallback):

Use the MyTrain API to prepare a TensorFlow model that will be used to train data sets with PowerAI Vision.

- "Template"
- "def onPreprocessing(self, labels, images, workspace_path, params)" on page 67
- "def onTraining(self, monitor_handler)" on page 68
- "def onCompleted(self, model_path)" on page 68
- "def onFailed(self, train_status, e, tb_message):" on page 68
- "Monitoring and reporting statistics" on page 68

Template

This is a template you can use for the MyTrain API:

```
class MyTrain(TrainCallback):
    def __init__():
        pass
    def onPreprocessing(self, labels, images, workspace_path, params):
        pass
    def onTraining(self, monitor_handler):
        pass
```

```
def onCompleted(self, model_path):
    pass
def onFailed(self, train_status, e, tb_message):
    pass
```

def onPreprocessing(self, labels, images, workspace_path, params)

Callback for data set preprocessing.

Input

labels (dict)

Image categories and index.

```
Example: {'safety_vest': 1, 'helmet': 0, 'no_safety_vest': 2, 'no_helmet': 3}
```

images

• *image classification* (dict): Image path and its category.

```
Example: {'/dataset/Acridotheres/001.jpg': 'Acridotheres', '/dataset/Butorides/
002.jpg': 'Gallinula', '/dataset/Butorides/003.jpg': 'Butorides'}
```

• *object detection* (list): List of annotation objects; including the image name and annotation.

Example:

```
[annotation[0] annotation[1] ...]
image filename
annotations[0].filename: /dataset/safety-detection/eelfba93-a5f0-4c8b-8496-ce7605914651.jpg
image size [width, height, depth]
annotations[0].size: [450, 330, 3]
bounding box #0 label
annotations[0].objects[0].label: helmet
# bounding box #0 position [xmin, ymin, xmax, ymax]
annotations[0].objects[0].bbox: [111, 16, 205, 106]
annotations[0].objects[1].label: helmet
annotations[0].objects[1].label: helmet
annotations[0].objects[2].label: safety_vest
annotations[0].objects[2].bbox: [40, 105, 215, 291]
annotations[0].objects[3].label: safety_vest
annotations[0].objects[3].bbox: [207, 124, 382, 309]
```

workspace_path (string)

Temporary workspace path recommended to be used in all training life cycles.

Example: "/tmp/workspace"

params (dict)

Hyper parameters for training. These parameters are available to the custom model, but they are not required.

• Object detection example:

```
{ 'max_iter' : 4000, 'learning_rate' : 0.001, 'weight_decay' : 0.0005, 'momemtum' :
0.9 , 'traintest_ratio' : 0.8 }
```

• Classification example:

```
{ 'max_iter' : 4000, 'learning_rate' : 0.001, 'weight_decay' : 0.0005,
'test_iteration' : 100, 'test_interval' : 20}
```

Output:

None

def onTraining(self, monitor_handler)

Callback for training.

Input

monitor_handler (MonitorHandler): Handler for train/test status monitoring.

Output

None

def onCompleted(self, model_path)

Callback for training completed. A training task is terminated either with onCompleted() or with onFailed(). You need to save the trained model in this callback.

Input

model_path (String): The absolute model path and file.

Output

None

def onFailed(self, train_status, e, tb_message):

Callback for training failed. A train task is terminated either with onCompleted() or with onFailed()

Input

train_status (string)

Training status when the failure occurred.

e (Exception object) Programming exception object.

tb_message (string)

Formatted traceback message.

Output

None

Monitoring and reporting statistics

The onTraining API passes a monitor_handler object. This object provides callbacks to report both training and test messages back to PowerAI Vision. Depending on the type of training being performed, classification or object detection, the appropriate callback must be used.

Object detection callbacks:

Use this callback when the custom model is trained for object detection.

- "def updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)" on page 69
- "def updateTestMetrics(mAP)" on page 69

def updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)

Handler for status updates from the training process. This should be called **actively** by your custom code to post training status to the PowerAI Vision user interface.

Input

current_iter (int) Current iteration in the epoch

max_iter (int) Maximum iterations in one epoch

loss_cls (float) Training loss of classification

loss_bbox (float) Training loss of bounding box prediction

epoch (int)

Current training epoch

Example

monitor_handler.updateTrainMetrics(current_iter, max_iter, loss_cls, loss_bbox, epoch)

Output

None

def updateTestMetrics(mAP)

Handler for status updates from the testing process. This should be called **actively** by your custom code to post testing status to the PowerAI Vision user interface.

Input

mAP (float): Testing mean average precision

Example

monitor_handler.updateTestMetrics(mAP)

Output

None

Classification callbacks:

Use this callback when the custom model is trained for image classification.

- "def updateTrainMetrics(current_iter, max_iter, loss, epoch)"
- "def updateTestMetrics(current_iter, accuracy, loss, epoch)" on page 70

def updateTrainMetrics(current_iter, max_iter, loss, epoch)

Handler for status updates from the training process. This should be called **actively** by your custom code to post training status to the PowerAI Vision user interface.

Input

current_iter (int)

Current iteration in the epoch

max_iter (int)

Maximum iterations in one epoch

loss (float)

Training loss

epoch (int)

Current training epoch

Example

monitor_handler.updateTrainMetrics(current_iter, max_iter, loss, epoch)

Output

None

def updateTestMetrics(current_iter, accuracy, loss, epoch)

Handler for status updates from the testing process. This should be called **actively** by your custom code to post testing status to the PowerAI Vision user interface.

Input

current_iter (int)

Current iteration in the epoch

accuracy (float)

Testing accuracy

loss (float)

Training loss

epoch (int)

Current training epoch

Example

monitor_handler.updateTrainMetrics(iter_num, accuracy, loss, epoch_num)

Output

None

Preparing a model that will be deployed in PowerAl Vision

If your custom model will be deployed in the PowerAI Vision framework, your custom model must meet the following requirements.

After the model is properly prepared, import it to PowerAI Vision by navigating to the Models page and clicking **Import .zip file**. To deploy the model, on the Models page, select the model and click **Deploy model**.

Custom model requirements:

- It must be TensorFlow based.
- It must implement the MyDeploy Python class.

- The MyDeploy implementation must reside in a file named deploy.py in the top level directory of the zip file contents.
- The following import must be added to the deploy.py file in order to define the training callbacks: from deploy_interface import DeployCallback
- The class name must be MyDeploy.

MyDeploy Template:

```
class MyDeploy(DeployCallback):
def __init__(self):
    pass
def onModelLoading(self, model_path, labels, workspace_path):
    pass
def onTest(self):
    pass
def onInference(self, image_url, params):
    pass
def onFailed(self, deploy_status, e, tb_message):
    pass
```

class MyDeploy(DeployCallback):

Use the MyDeploy API to prepare a TensorFlow model that will be deployed in PowerAI Vision.

Template

```
This is a template you can use for the MyDeploy API:

class MyDeploy(DeployCallback):

def __init__(self):

    pass

def onModelLoading(self, model_path, labels, workspace_path):

    pass

def onTest(self):

    pass

def onInference(self, image_url, params):

    pass

def onFailed(self, deploy_status, e, tb_message):

    pass
```

def onModelLoading(self, model_path, labels, workspace_path)

Callback for load model.

Input

```
model_path (string)
```

Model path. The model must be decompressed before this callback.

workspace_path (string)

Temporary workspace path recommended to be used in all deploy activities.

labels (dict)

The label index to name mapping.

Example: {1: 'safety_vest', 0: 'helmet', 2: 'no_safety_vest', 3: 'no_helmet'}

Output:

None

def onTest(self)

Test API interface with a custom message.

Input

None

Output

message (string): Output message.

def onInference(self, image_url, params)

Inference with a single image.

Input

image_url (string)

Path of the image for inference.

params (dict)

Additional inference options.

heatmap (string)

Request a heat map. This is only supported for classification. Possible values:

- "true" : A heat map is requested.
- "false" : A heat map is not requested.

conf_threshold (float)

Confidence threshold. Value in the range 0.0 - 1.0, to be treated as a percentage. Only results with a confidence greater than the specified threshold are returned. The smaller confidence threshold you specify, the more results are returned. If you specify 0, many, many results will be returned because there is no filter based on the confidence level of the model.

Output (classification)

result({"label": "apple", "confidence": 0.9, "heatmap": "_value_"}): predicted label and its score label (string) : predicted label nameconfidence (float) : number for certainty. between 0 and 1 heatmap (string) : heatmap return

Output (object detection)

result([{"confidence": 0.95, "label": "badge", "ymax": 145, "xmax": 172, "xmin": 157, "ymin": 123}]): predicted confidence(float): number for certainty. between 0 and 1 label(string): predicted label nameymax(int): the max Y axis of bounding boxxmax(int): the max X axis of boundi ymin(int): the min Y axis of bounding boxxmin(int): the min X axis of bounding box

def onFailed(self, deploy_status, e, tb_message)

Callback for deploy failed. A deploy task is terminated with onFailed().

Input

deploy_status (string)

Deploy status when the failure occurred.

e (Exception object)

Programming exception object.

tb_message (string)

Formatted traceback message.

Output

None

Base models included with PowerAl Vision

You can use a *base model* to help train your model. You can choose your own Faster R-CNN or GoogLeNet model, or select one of the models that is included with PowerAI Vision.

Table 2. Base models included with PowerAI Vision

Туре	Number of images	Size	Source
Action	9532	310M	Stanford 40 actions
Flower	8189	348M	Visual Geometry Group
Food	1503	14.6M	https://ibm.box.com/s/cbocm5pvtyudaoaypdwl3jaypets1hel
General	ImageNet dataset		ilsvrc12 http://image-net.org/download
Landscape	1472	22.2M	Proprietary data set
Scene	108754	38G	SUN database
Vehicle	16185	1.9G	https://ai.stanford.edu/%7Ejkrause/cars/car_dataset.html

Deploying a trained model

Deploy a trained model to get it ready to use within PowerAI Vision or a different program, such as IBM PowerAI. Deploying a model creates a unique API endpoint based on that model for inference operations.

To deploy the trained model, follow these steps:

- 1. Click **Models** from the menu.
- 2. Select the model you want to deploy and click **Deploy**.
- **3**. Specify a name for the model, and for models that were trained with the **Optimized for speed (tiny YOLO v2)** model, choose the accelerator to deploy to. You can choose GPU, CPU, or Xilinx FPGA 16 bit (technology preview).

Note: Deploying a model to a Xilinx FPGA requires the Xilinx Alveo U200 Accelerator card. GPUs are used as follows:

- Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as '-', which indicates that this model uses a full GPU and does not share the resource with any other deployed models.
- Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses packing to deploy the models. That is, the model is deployed to the GPU that has the most models deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to determine which deployed models share a GPU resource. To free up a GPU, *all* deployed models in a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.

4. Click **Deploy**. The Deployed Models page is displayed. When the model has been deployed, the status column displays **Ready**.

5. Click the deployed model to get the API endpoint, to view details about the model, such as the owner and the accuracy, and to test other videos or images against the model. For information about using the API see Vision Service API documentation.

Note: When using the API, the smaller confidence threshold you specify, the more results are returned. If you specify 0, many, many results will be returned because there is no filter based on the confidence level of the model.

6. If necessary, you can delete a deployed model. To delete a deployed model, click **Deployed Models**. Next, select the model that you want to delete and click **Delete**. The trained model is not deleted from PowerAI Vision.

Related concepts:

"Working with the user interface" on page 51

The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the action bar, the data area, and the notification center.

"Understanding metrics" on page 79

PowerAI Vision provides several metrics to help you measure how effectively your model has been trained.

Related information:

I Vision Service API documentation

PowerAl Vision REST APIs

You can use REST APIs to work with PowerAI Vision data sets and models, such as performing training and deployment. You can also use them to perform administrative tasks, such as monitoring events. These APIs allow you to bypass the user interface and automate PowerAI Vision processes or solutions.

For information about using the API see Vision Service API documentation. There are also examples of using the APIs for different actions, published here.

Testing a model

After deploying your model, you should test it against other images and videos to make sure that it works as expected.

- 1. Click **Deployed Models** from the menu.
- 2. Click the model you want to test. The model opens in the Deployed model page.
- **3**. Use the **Test Videos** (object detection models only) or **Test Images** areas to upload images and videos, one at a time.
- 4. The results are shown on the bottom of the window.
 - If you used an image to test an image classification model, test result displays the uploaded picture with the resultant heat map overlayed, and gives the classification and the confidence of the classification. Multiple classes are returned with the decreasing levels of confidence for the different classes. The heat map is for the highest confidence classification and can help you determine whether the model has correctly learned the features of this classification. To hide classes with a lower confidence level, use the **Confidence threshold** slider.

The red area of the heat map corresponds to the areas of the picture that are of highest relevance. Use the slider to change the opacity of the heat map. Because the heat map is a square, the test image is compressed into a square. This might cause the image to look distorted, but it will reliably show you the areas that the algorithm identified as relevant.

• If you used an image to test an object detection model, the identified objects are labeled in the image, with the calculated precision.

- If you used a video to test an object detection model, the video is processed, then as you watch the processed video, the identified objects are labeled as they appear in the video. All objects are labeled using bounding boxes, even if the model is trained for segmentation. Processing the video might take a while, depending on its size.
- 5. If you are satisfied with the results, the model is ready to be used in production. Otherwise, you can refine the model by following the instructions in this topic: "Refining a model."

Refining a model

After deploying a model, you can improve its accuracy by supplying more data. There are several methods you can use to add more data to the model.

You can add more data by using any combination of the following options:

- 1. Upload new images or videos to the data set and classify or label them as appropriate.
- 2. For an existing video, capture more frames and classify or label them as appropriate.
- **3.** Use data augmentation. *Data augmentation* is the use of filters, such as blur and rotate, to create new versions of existing images. When you use data augmentation, a new data set is created that contains all of the existing images, plus the newly generated images. For instructions, see "Augmenting the data set" on page 77.
- 4. For models trained for object detection, you can use the Auto label function to identify more objects in the existing data. See "Automatically labeling objects" for instructions.

After adding more data, train the model again.

Automatically labeling objects

After deploying a model for object detection, you can improve its accuracy by using the Auto label function. This function improves the model's accuracy by quickly adding more data to the data set.

Notes:

- You can automatically label images or videos that have not had labels manually added. If any labels have been manually added, that image or frame is skipped.
- If labels have been added through auto label, those images and frames are reprocessed. The previous labels are removed and new labels are added.
- If you use a trained Detectron model with segmentation turned on to generate the labels, polygons are used instead of rectangular boxes.
- When performing multiple auto label operations on the same video, it is possible to get multiple frames with the same time offset. This situation can occur when the intervals overlap and labels have been edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at each of the 10 second intervals with edited labels.

• You can manually add labels to images and frames that have been auto labeled, and you can manipulate (move, resize) the labels that were automatically generated. If an auto labeled frame or image is edited, either by modifying an automatically generated label, or by manually adding a new label, **all** auto label annotations in the frame or image are converted to manually labeled annotations. If you then run **Auto label** again, those images and frames are skipped because the frame was manually edited.

When you automatically label objects, an existing trained model is used to generate new labels in the data set.

- 1. Open the data set that you want to add more data to and select Auto label.
- 2. Select the trained model to use, then click Auto label.

3. Labels are added to existing images or videos have not been manually labeled. By default, the automatically added labels are light red. For videos, if frames have already been captured, those frames are used for auto labeling. If frames have not been captured, the video is ignored.

Automatically labeling objects in a data set

When you auto label a data set, an existing trained model is used to generate labels for images and video frames that have not been manually labeled.

Notes:

- All images and frames that were not manually labeled are processed. Therefore, objects that contain only labels that were added by using the auto label function are reprocessed. The previous labels are removed and new labels are added.
- When auto labeling a data set, only images and frames are auto labeled. Therefore, any videos that do not have captured frames are skipped.

Follow these steps to generate new labels in the data set.

- 1. Open the data set that you want to add more data to and select Auto label.
- 2. Select the trained model to use, then click Auto label.
- **3**. Labels are added to existing images or videos have not been manually labeled. By default, the automatically added labels are light red and manually added labels are blue.

You can manually add labels to images and frames that have been auto labeled, and you can manipulate (move, resize) the labels that were automatically generated. If an auto labeled frame or image is edited, either by modifying an automatically generated label, or by manually adding a new label, **all** auto label annotations in the frame or image are converted to manually labeled annotations. If you then run **Auto label** again, those images and frames are skipped because the frame was manually edited.

Automatically labeling videos

When using the auto label function on a data set, only frames and images processed. Videos are ignored. However, you can run the auto label function on an individual video.

Note: Any frames that were previously captured by using auto capture and were not manually labeled are deleted before auto labeling. This helps avoid labeling duplicate frames. Manually captured frames are not deleted.

Follow these steps to run the auto label function on a video.

- 1. Open the data set that contains the video.
- 2. Select the video and click Label objects.
- **3**. Click **Auto label** then choose the time interval to capture frames and the trained model to use for labeling, then click **Auto label**.
- 4. Frames are captured at the specified interval and labels are added by using the specified trained model. By default, the automatically added labels are light red.

After processing, you can manually add labels to the frames that have been auto labeled and you can manipulate (move, resize) the labels that were automatically generated. If a frame with automatically generated labels is edited, all labels on the frame are converted to manual labels.

When performing multiple auto label operations on the same video, it is possible to get multiple frames with the same time offset. This situation can occur when the intervals overlap and labels have been edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at each of the 10 second intervals with edited labels.

Augmenting the data set

After deploying a model, you can improve the model by using data augmentation to add modified images to the data set, then retraining the model. *Data augmentation* is the use of filters, such as blur and rotate, to create new versions of existing images. When you use data augmentation, a new data set is created that contains all of the existing images, plus the newly generated images.

To augment a data set, follow these steps:

- 1. Open the data set for a deployed model.
- 2. Select the images to use for augmentation, then click **Augment data**. If you select a video, every captured frame is used for augmentation. If you select some, but not all, frames in a video, only the selected frames are used for augmentation.
- 3. Choose any combination of filters to apply to your data set, then click Continue.

Each filter generates one or more new versions of each selected image; the filters are not cumulative. For example, if you select **Sharpen** and **Flip horizontal**, six new images are generated; one flipped and five sharpened.

When you select a filter, you can see an example of what that filter would do to an image. This sample image is **not** a live preview of the filter. It is an example of what an image might look like with that filter applied. Some filters, such as Blur and Sharpen, have additional settings you can choose.

- 4. Specify a name for the new data set and click Create data set.
- 5. The new data set, containing the original images, is created immediately. The augmented images are added after all processing completes. After the new data set is created, you can train a model based on the new data set. See this topic for instructions: "Training a model" on page 62.

Augmentation settings

These settings are available when augmenting data.

Each filter generates one or more new versions of each selected image; the filters are not cumulative. For example, if you select **Sharpen** and **Flip horizontal**, six new images are generated; one flipped and five sharpened.

Note: When you select a filter, you can see an example of what that filter would do to an image. This sample image is **not** a live preview of the filter. It is an example of what an image might look like with that filter applied.

Blur Select the maximum amount of Gaussian and motion blur. Gaussian blur makes the entire image appear out of focus by reducing detail and noise. Motion blur makes the image appear as if it (or the camera) is in motion.

Five new images are generated in the range of each nonzero selection. For example, if Motion = 25 and Gaussian = 10, then five images are generated by applying a motion blur filter in random strengths in the range 0-25, and five additional images are generated by applying a Gaussian blur filter in the range 0-10.

Sharpen

Select the maximum amount of sharpening to apply. Some noise will be introduced. Five new images are generated in the specified range. For example, if Sharpness = 25, five new images are generated by applying the sharpen filter in random strengths in the range of 0-25.

Color Select the maximum amount of change in the image's brightness, contrast, hue, and saturation. Five new images are generated by using randomly selected values in the selected ranges. The resultant values can be either positive or negative.

For example, if Brightness = 30, Contrast = 15, Hue = 5, and Saturation = 10, five images are generated that have brightness changed by (-30, 30)%, contrast is changed by (-15, 15)%, and so on.

Crop Select the maximum percentage of the image that should remain. For example, selecting 25 means that at most 25% of the original image remains and 75% is removed. Five new images will be generated that are cropped in the selected range. The crop is centered at a random point.

For example, if Crop = 25, five images are generated cropped to retain 100% - 25% of the original image.

Vertical flip

Create a new image by flipping the existing image across the top edge. That is, the top of the image becomes the bottom.

Horizontal flip

Create a new image by flipping the existing image across the side edge. That is, the left side of the image becomes the right side.

- **Rotate** Select the maximum value of rotation for the new images. Rotation can be either clockwise or counter-clockwise. Five new images are generated that are rotated by this amount. For example, if this value is 45, five new images are generated that are rotated either clockwise or counter-clockwise by a random number in the range 0-45.
- **Noise** Select the maximum amount of noise to add to the new images, specified as a percentage of what PowerAI Vision determines to be a reasonable amount of noise for the images to remain usable. Therefore, if you select 100, none of the generated images will have 100% noise added. Instead, the output images will possibly have the maximum amount of noise added while still remaining usable.

Five new images are generated with noise added in the specified range. For example, if this value is 25, five new images are created with a random amount of noise added in the range 0 - 25% of a reasonable amount of noise.

Importing and exporting PowerAI Vision information

You can import and export PowerAI Vision models and data sets. This allows you to save them for archiving then use them later, use them on a different PowerAI Vision install, and so on.

- "Exporting"
- "Importing" on page 79

Exporting

Export a data set

To export a data set, open the Data sets page, open the data set you want to export, then click **Export** in the action bar. The data set is saved in your default download directory as *data_set_name.zip*. This zip file contains the images as well as any tags or categories you have assigned.

Notes:

• When exporting a data set, any objects that are not used in the data set are not contained in the exported data set. Therefore, they are not included when the data set is imported.

For example, if the object or label "car" is defined but is not used in any of the images in the data set, the exported data set does not include the "car" object or label. When the data set is imported, the "car" object or label is not created.

• In PowerAI Vision 1.1.1, any information about augmented images is lost on export. Therefore, if the data set is later imported (regardless of the product version), the augmented images will be in the data set, but they will no longer be marked as augmented.

Export a model

When you export custom trained model (a model that was trained by using a custom model), the generated zip file is not encrypted or password protected, unlike with other models exported from PowerAI Vision.

To export a model, open the Models page, select the model you want to export, then click **Export** in the left pane. The model is saved in your default download directory as *character_string.zip*; where *character_string* is randomly generated by the system.

Note:

If the model is not a Custom model that was imported from the Models page, the exported model can only be used with PowerAI Vision. It can be imported into the Inference Server product and deployed with the Inference Server product.

It is not recommended that you use an exported model with an earlier version of the product than it was exported from. Additionally, a model from a prior version will not have support for features that were added to later versions of the product. That is, if you export a model from version x.1 and import it into x.2, features that were added in x.2 will not be supported on the imported model.

Importing

Import a data set

- 1. Navigate to the Data sets page.
- 2. Drag and drop an exported data set .zip file onto the Create box.

Important: After the upload starts, do not close the PowerAI Vision tab or refresh the page. Doing so stops the upload.

3. After the upload completes, the data set has its original name.

Notes:

- In PowerAI Vision 1.1.1, any information about augmented images is lost on export. Therefore, if the data set is later imported (regardless of the product version), the augmented images will be in the data set, but they will no longer be marked as augmented.
- The data set associated with a model is not preserved when it is exported. Therefore, for imported models, the Data set field is set to "Not found".

Import a model

Instead of using PowerAI Vision to train a new model, you can *import* a model that was previously trained with PowerAI Vision, and was then exported. This lets you streamline data processing by offloading training tasks and allowing you to reuse models on multiple systems. After the model is imported to the Models page, you can deploy it in PowerAI Vision. Use the information in this topic to prepare a custom model that will be deployed in PowerAI Vision: "Preparing a model that will be deployed in PowerAI Vision" on page 70.

- 1. Navigate to the Models page.
- 2. Drag and drop a previously exported model .zip file onto the Import box.

Important: After the upload starts, do not close the PowerAI Vision tab or refresh the page. Doing so stops the upload.

3. After the upload completes, the model has its original name.

Understanding metrics

PowerAI Vision provides several metrics to help you measure how effectively your model has been trained.

To understand these metrics, you must understand these terms:

True positive

A *true positive* result is when PowerAI Vision correctly labels or categorizes an image. For example, categorizing an image of a cat as a cat.

False positive

A *false positive* result is when PowerAI Vision labels or categorizes an image when it should not have. For example, categorizing an image of a cat as a dog.

True negative

A *true negative* result is when PowerAI Vision correctly does not label or categorize an image. For example, not categorizing an image of a cat as a dog.

False negative

A *false negative* result is when PowerAI Vision does not label or categorize an image, but should have. For example, not categorizing an image of a cat as a cat.

Of course, for a model in production, the values for true negative / positive and false negative / positive can't accurately be known. These values are the expected values for these measurements.

- "Metrics for image classification (Trained for accuracy)"
- "Metrics for object detection (Trained for accuracy)" on page 81
- "Metrics for object detection using the Tiny Yolo model (Trained for speed)" on page 81
- "Metrics for custom models" on page 82

Metrics for image classification (Trained for accuracy)

Accuracy

Measures the percentage of correctly classified images. It is calculated by (true positives + true negatives) / (true positives + true negatives + false positives + false negatives).

PR curve (Advanced)

The precision-recall (PR) curve plots precision vs. recall (sensitivity). Because precision and recall are typically inversely related, it can help you decide whether the model is appropriate for your needs. That is, do you need a system with high precision (fewer results, but the results are more likely to be accurate), or high recall (more results, but the results are more likely to contain false positives)?

Precision

Precision tells describes how "clean" our population of hits is. It measures the percentage of images that are correctly classified. That is, when the model classifies an image into a category, how often is it correct? It is calculated by true positives / (true positives + false positives).

Recall

The percentage of the images that were classified into a category, compared to all images that should have been classified into that category. That is, when an image belongs in a category, how often is it identified? It is calculated as true positives/(true positives + false negatives).

Confusion matrix (Advanced)

The confusion matrix is used to calculate the other metrics, such as precision and recall. Each column of the matrix represents the instances in a predicted class (those that PowerAI Vision marked as belonging to a category). Each row represents the instances in an actual category. Therefore, each cell measures how many times an image was correctly and incorrectly classified.

You can view the confusion matrix as a table of values or a heat map. A heat map is a way of visualizing the data, so that the higher values appear more "hot" (closer to red) and lower values appear more "cool" (closer to blue). Higher values show more confidence in the model.

This matrix makes it easy to see if the model is confusing categories, or not identifying certain categories.

Metrics for object detection (Trained for accuracy)

Accuracy

Measures the percentage of correct image classifications. It is calculated by (true positives + true negatives) / all cases.

Mean Average precision (mAP)

The average over all classes of the maximum *precision* for each object at each *recall* value. Precision measures how accurate the model is. That is, the percent of the classified objects that are correct. Recall measures how well the model returns the correct objects. For example, out of 100 images of dogs, how many of them were classified as dogs?

To calculate this, first, the PR curve is found. Then, the maximum precision for each recall value is determined. This is the maximum precision for any recall value greater than or equal to the current recall value. For example, if the precision values range from .35 to .55 (and then never reach .55 again) for recall values in the interval .3 - .6, then the maximum precision for every recall value in the interval .3 - .6 is set to .55.

The mAP is then calculated as the average of the maximum precision values.

IoU (Intersection over union)

The accuracy of the location and size of the image label boxes.

It is calculated by the intersection between a ground truth bounding box and a predicted bounding box, divided by the union of both bounding boxes; where the intersection is the area of overlap, a *ground truth* bounding box is the hand drawn box, and the *predicted bounding box* is the one drawn by PowerAI Vision.

Confusion matrix (Advanced)

The confusion matrix is used to calculate the other metrics, such as precision and recall. Each column of the matrix represents the instances in a predicted class (those that PowerAI Vision marked as belonging to a category). Each row represents the instances in an actual category. Therefore, each cell measures how many times an image was correctly and incorrectly classified.

You can view the confusion matrix as a table of values or a heat map. A heat map is a way of visualizing the data, so that the higher values appear more "hot" (closer to red) and lower values appear more "cool" (closer to blue). Higher values show more confidence in the model.

This matrix makes it easy to see if the model is confusing categories, or not identifying certain categories.

PR curve (Advanced)

The precision-recall (PR) curve plots precision vs. recall (sensitivity). Because precision and recall are typically inversely related, it can help you decide whether the model is appropriate for your needs. That is, do you need a system with high precision (fewer results, but the results are more likely to be accurate), or high recall (more results, but the results are more likely to contain false positives)?

Precision

Precision tells describes how "clean" our population of hits is. It measures the percentage of objects that are correctly identified. That is, when the model identifies an object, how often is it correct? It is calculated by true positives / (true positives + false positives).

Recall The percentage of the images that were labeled as an object, compared to all images that contain that object. That is, how often is an object correctly identified? It is calculated as true positives/(true positives + false negatives).

Metrics for object detection using the Tiny Yolo model (Trained for speed)

Accuracy

Measures the percentage of correctly classified objects. It is calculated by (true positives + true negatives) / (true positives + true negatives + false positives + false negatives).

Metrics for custom models

When a custom model is imported and deployed, the following metric is shown:

Accuracy

Measures the percentage of correct categorizations. It is calculated by (true positives + true negatives) / (true positives + true negatives + false positives + false negatives).

Using PowerAl Vision

These fictional examples give step-by-step instructions of how to use PowerAI Vision to accomplish various tasks.

Scenario: Detecting objects in images

In this fictional scenario, you want to create a deep learning model to determine the make and model of a car caught by a traffic camera.

The image file used in this scenario is available for download here: Download car image.

To create a deep learning model, you will perform the following steps:

- 1. "Import images and create a data set"
- 2. "Labeling objects in an image"
- 3. "Training a model" on page 84
- 4. "Deploying a trained model" on page 85

Import images and create a data set

First, create a data set and add images to it.

- 1. Log in to PowerAI Vision.
- 2. Click **Data Sets** in the navigation bar to open the Data Sets page. There are several ways to create a new data set. We will create a new, empty data set.
- 3. From the Data set page, click the icon and name the data set Traffic camera.
- 4. To add an image to the data set, click the Traffic image data set and click **Import file** or drag the image to the + area.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload completes. You can navigate to different pages within PowerAI Vision during the upload.

Labeling objects in an image

The next step is to label objects in the images. For object detection, you must have at minimum five labels for each object. We will create "Black car" and "White car" objects and will label at least five images as black cars, and at least five as white cars.

- 1. Select the images from your data set and click Label Objects.
- 2. Create new object labels for the data set by clicking Add new by the Objects list. Enter Black car, click Add, then enter Black car, then click OK.
- **3**. Label the objects in the images:
 - a. The first image is open in the data area, with thumbnails of all the selected image on the left side. Select the correct object label, for example, "Black car".
 - b. Choose **Box** or **Polygon** from the bottom left, depending on the shape you want to draw around each object. Boxes are faster to label and train, but less accurate. Only Detectron models support polygons. However, if you use polygons to label your objects, then use this data set to train a model that does not support polygons, bounding boxes are defined and used. Draw the appropriate shape around the object.
 - **c**. Select the thumbnail of the next image to open it. Add the appropriate labels, and continue through the rest of the images.

- Do not label part of an object. For example, do not label a car that is only partially in the image.
- If an image has more than one object, you must label all objects. For example, if you have cars and motorcycles defined as objects for the data set, and there is an image with both cars and motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the accuracy of the model.
- Label each individual object. Do not label groups of objects. For example, if two cars are right next to each other, you must draw a label around each car.
- Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
- You can draw shapes around objects that touch or overlap. For example, if one object is behind another object, you can label them both. However, it is recommended that you only label objects if the majority of the object is visible.
- Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the right edge, you might have to click the left arrow key several times to start panning in the other direction.

- Shapes cannot extend off the edge of the image.
- After defining a shape, you can copy and paste it elsewhere in the same image or in a different image by using standard keyboard shortcuts. After you paste it, you can refine the shape by moving, adding, or removing points in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in the image carousel. From the data set, select all images that will share shapes, then click **Label objects**. All images will be listed in the image carousel in the left side of the Label objects window.

- Labeling with polygons
 - To delete a point from an outline, ctrl+click (or cmd+click).
 - To add a point to an outline, click the translucent white square between any two points on the outline.
 - To move a point on the outline, click it and drag.
- 4. After all objects are labeled in all of the image, click **Done editing**.

Training a model

With all the object labels that are identified in your data set, you can now train your deep learning model. To train a model, complete the following steps:

- 1. From the Data set page, click Train.
- 2. Fill out the fields on the Train Data set page, ensuring that you select **Object Detection**. We will choose **Accuracy (faster R-CNN)** for **Model selection**
- 3. Click Train.
- 4. (Optional *Only supported when training for object detection*.) Stop the training process by clicking **Stop** training > Keep Model > Continue.

You can wait for the entire training model process complete, but you can optionally stop the training process when the lines in the training graph start to flatten out. This is because improvements in quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with Detectron), because larger iteration counts and training times have been demonstrated to improve accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can still being improved even when the accuracy of identifying the object location stopped improving.

Loss VS Iteration

Iteration

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have enough information. The same is true if the accuracy of the training graph fails to rise or the errors in the graph do not decrease at the end of the training process. For example, a model with high accuracy might be able to discover all instances of different race cars, but might have trouble differentiating between specific race cars or those that have different colors. In this situation, add more images or video frames to the data set, label them, then try the training again.

Deploying a trained model

To deploy the trained model, complete the following steps. GPUs are used as follows:

- Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as '-', which indicates that this model uses a full GPU and does not share the resource with any other deployed models.
- Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses packing to deploy the models. That is, the model is deployed to the GPU that has the most models deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to determine which deployed models share a GPU resource. To free up a GPU, *all* deployed models in a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.

- 1. Click Models from the menu.
- 2. Select the model you created in the previous section and click **Deploy**.
- **3**. Specify a name for the model, and click **Deploy**. The Deployed Models page is displayed, and the model is deployed when the status column displays **Ready**.
- 4. Double-click the deployed model to get the API endpoint and test other videos or images against the model. For information about using the API see Vision Service API documentation.

Next steps

You can continue to refine the data set as much as you want. When you are satisfied with the data set, you can train the model again. This time when you train the model, you might want to train the model for a longer time to improve the overall accuracy of the model. The loss lines in the training model graph should converge to a stable flat line. The lower the loss lines are in the training graph the better. After the training completes, you can deploy the model again. You can double-click the deployed model to get the API endpoint and test other images or images against the model.

Scenario: Detecting objects in a video

In this fictional scenario, you want to create a deep learning model to monitor traffic on a busy road. You have a video that displays the traffic during the day. From this video, you want to know how many cars are on the busy road every day, and what are the peak times that have the most cars on the road.

The video file used in this scenario is available for download here: Download car video.

To create a deep learning model, you will perform the following steps:

- 1. Importing a video
- 2. Labeling objects in a video
- 3. Training a model
- 4. Deploying a model
- 5. Automatically label frames in a video

Import a video and create a data set

First, create a data set and add videos to it.

- 1. Log in to PowerAI Vision.
- 2. Click **Data Sets** in the navigation bar to open the Data Sets page. There are several ways to create a new data set
- 3. From the Data set page, click the icon and name the data set Traffic Video.
- 4. To add a video to the data set, click the Traffic Video data set and click **Import file** or drag the video to the **+** area.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload completes. You can navigate to different pages within PowerAI Vision during the upload.

Labeling objects in a video

The next step is to label objects in the video. For object detection, you must have at minimum five labels for each object. We will create Car and Motorcycle objects and will label at least five frames in the video with cars and at least five frames with motorcycles.

- 1. Select the video from your data set and select Label Objects.
- 2. Capture frames by using one of these methods:
 - Click **Auto capture frames** and specify a value for **Capture Interval (Seconds)** that will result in at least five frames. We will select this option and specify 10 seconds.

Note: Depending on the length and size of the video and the interval you specified to capture frames, the process to capture frames can take several minutes.

• Click **Capture frame** to manually capture frames. If you use this option, you must capture a minimum of five frames from the video.

3. If you used **Auto capture frames**, verify that there are enough of each object type in the video frames. If not, follow these steps to add new frames to the existing data set.

In this scenario, the motorcycle is only in a single automatically captured frame at 40 seconds. Therefore, we must capture at least four more frames with the motorcycle. The motorcycle comes into view at 36.72 seconds. To correctly capture the motorcycle in motion we will create extra frames at 37.79 seconds, 41.53 seconds, and 42.61 seconds.

- a. Play the video. When the frame you want is displayed, click pause.
- b. Click Capture Frame.
- 4. Create new object labels for the data set by clicking **Add new** by the Objects list. Enter Car, click **Add**, then enter Motorcycle, then click **OK**.
- 5. Label the objects in the frames:
 - Select the first frame in the carousel.
 - Select the correct object label, for example, "Car".
 - Choose **Box** or **Polygon** from the bottom left, depending on the shape you want to draw around each object. Boxes are faster to label and train, but less accurate. Only Detectron models support polygons. However, if you use polygons to label your objects, then use this data set to train a model that does not support polygons, bounding boxes are defined and used. Draw the appropriate shape around the object.

Note: When **Box** or **Polygon** is selected, you have to hold down the Alt key for non-drawing interactions in the image. This includes trying to select, move, or edit previously drawn shapes in the image, and panning the image by using the mouse. To return to the normal mouse interactions, deselect the **Box** or **Polygon** button.

Review the following tips about identifying and drawing objects in video frames and images:

- Do not label part of an object. For example, do not label a car that is only partially in the frame.
- If an image has more than one object, you must label all objects. For example, if you have cars and motorcycles defined as objects for the data set, and there is an image with both cars and motorcycles in it, you must label the cars and the motorcycles. Otherwise, you decrease the accuracy of the model.
- Label each individual object. Do not label groups of objects. For example, if two cars are right next to each other, you must draw a label around each car.
- Draw the shape as close to the objects as possible. Do not leave blank space around the objects.
- You can draw shapes around objects that touch or overlap. For example, if one object is behind another object, you can label them both. However, it is recommended that you only label objects if the majority of the object is visible.
- Use the zoom buttons (+ and -) on the bottom right side of the editing panels to help draw more accurate shapes.

Note: If you are zoomed in on an image and use the right arrow key to move all the way to the right edge, you might have to click the left arrow key several times to start panning in the other direction.

- Shapes cannot extend off the edge of the frame.
- After defining a shape, you can copy and paste it elsewhere in the same image or in a different image by using standard keyboard shortcuts. After pasting the shape, it can be selected and dragged to the desired location in the image. The shape can also be edited to add or remove points in the outline.

Note: To copy and paste a shape from one image to another, both images have to be available in the image carousel. From the data set, select all images that will share shapes, then click **Label objects**. All images will be listed in the image carousel in the left side of the Label objects window.

• Labeling with polygons

- To delete a point from an outline, ctrl+click (or cmd+click).
- To add a point to an outline, click the translucent white square between any two points on the outline.
- To move a point on the outline, click it and drag.

The following figure displays the captured video frame at 41.53 seconds with object labels of **Car** and **Motorcycle**. Figure 1 also displays a box around the five frames (four of the frames were added manually) in the carousel that required object labels for the motorcycle that is in each frame.

Figure 11. Labeling objects in PowerAI Vision

Training a model

With all the object labels that are identified in your data set, you can now train your deep learning model. To train a model, complete the following steps:

- 1. From the Data set page, click Train.
- 2. Fill out the fields on the Train Data set page, ensuring that you select **Object Detection**. We will choose **Accuracy (faster R-CNN)** for **Model selection**
- 3. Click Train.
- 4. (Optional *Only supported when training for object detection*.) Stop the training process by clicking **Stop training** > **Keep Model** > **Continue**.

You can wait for the entire training model process complete, but you can optionally stop the training process when the lines in the training graph start to flatten out. This is because improvements in quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with Detectron), because larger iteration counts and training times have been demonstrated to improve accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can still being improved even when the accuracy of identifying the object location stopped improving.

Loss VS Iteration

Iteration

Figure 12. Model training graph

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have enough information. The same is true if the accuracy of the training graph fails to rise or the errors in the graph do not decrease at the end of the training process. For example, a model with high accuracy might be able to discover all instances of different race cars, but might have trouble differentiating between specific race cars or those that have different colors. In this situation, add more images or video frames to the data set, label them, then try the training again.

Deploying a trained model

To deploy the trained model, complete the following steps. GPUs are used as follows:

- Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as '-', which indicates that this model uses a full GPU and does not share the resource with any other deployed models.
- Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses packing to deploy the models. That is, the model is deployed to the GPU that has the most models deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to determine which deployed models share a GPU resource. To free up a GPU, *all* deployed models in a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.

- 1. Click Models from the menu.
- 2. Select the model you created in the previous section and click Deploy.
- **3**. Specify a name for the model, and click **Deploy**. The Deployed Models page is displayed, and the model is deployed when the status column displays **Ready**.
- 4. Double-click the deployed model to get the API endpoint and test other videos or images against the model. For information about using the API see Vision Service API documentation.

Automatically label frames in a video

You can use the auto label function to automatically identify objects in the frames of a video after a model has been deployed.

In this scenario, you have only nine frames. To improve the accuracy for your deep learning model, you can add more frames to the data set. Remember, you can rapidly iterate by stopping the training on a model and checking the results of the model against a test data set. You can also use the model to auto label more objects in your data set. This process improves the overall accuracy of your final model.

To use the auto label function, complete the following steps:

Note: Any frames that were previously captured by using auto capture and were not manually labeled are deleted before auto labeling. This helps avoid labeling duplicate frames. Manually captured frames are not deleted.

- 1. Click **Data sets** from the menu, and select the data set that you used to create the previously trained model.
- 2. Select the video in the data set that had nine frames, and click Label Objects.
- 3. Click Auto label.
- 4. Specify how often you want to capture frames and automatically label the frames. Select the name of the trained model that you deployed in step 3, and click **Auto label**. In this scenario, you previously captured frames every 10 seconds. To improve the accuracy of the deep learning model by capturing and labeling more frames, you can specify 6 seconds.
- 5. After the auto label process completes, the new frames are added to the carousel. Click the new frames and verify that the objects have the correct labels. The object labels that were automatically added are green and the object labels you manually added are in blue. In this scenario, the carousel now has 17 frames.

Next steps

After processing, you can manually add labels to the frames that have been auto labeled and you can manipulate (move, resize) the labels that were automatically generated. If a frame with automatically generated labels is edited, all labels on the frame are converted to manual labels.

When performing multiple auto label operations on the same video, it is possible to get multiple frames with the same time offset. This situation can occur when the intervals overlap and labels have been edited on the frames at the overlap points.

For example, labeling at a 10 second interval, editing some of the labels on those frames, and then labeling again at a 5 second interval has an overlap every 10 seconds. There might be duplicate images at each of the 10 second intervals with edited labels.

You can continue to refine the data set as much as you want. When you are satisfied with the data set, you can retrain the model by completing steps 1 - 3. This time when you retrain the model, you might want to train the model for a longer time to improve the overall accuracy of the model. The loss lines in the training model graph should converge to a stable flat line. The lower the loss lines are in the training graph the better. After the training completes, you can redeploy the model by completing steps 1 - 3. You can double-click the deployed model to get the API endpoint and test other videos or images against the model.

Related concepts:

"Working with the user interface" on page 51

The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the action bar, the data area, and the notification center.

"Understanding metrics" on page 79

PowerAI Vision provides several metrics to help you measure how effectively your model has been trained.

Related information:

➡ Vision Service API documentation

Scenario: Classifying images

The goal of this example is to train a model to classify images of birds into groups based on their physiological similarities. Once the model is trained with a known dataset, users can upload new data sets to auto classify the birds into their respective categories. We will prepare the data, create a data set, train the model, and test the model.

1. Prepare the data.

Data preparation consists of gathering two types of data, *training data* and *test data*. Training data is used to teach the neural network features of the object so that it can build the classification model. Test data is used to validate the accuracy of the trained model. Our data will include pictures of different types of birds.

Notes:

- Different images should be used for training data and test data.
- Images must be in one of these formats:
 - JPEG
 - PNG
- 2. Create a data set. Log in to the PowerAI Vision user interface, click **Data Sets** in the navigation bar, click **Create new data set** and name the data set Birds.
- **3**. Populate the data set.
 - a. In the left pane, expand Categories, click **Add category**. Add the "Acridotheres" category and click **Add**, then click **OK**.
 - b. Upload images of Acridotheres by dragging the images onto the Drag files here area.
 - c. In the left pane, click "Uncategorized". The newly uploaded files are shown.
 - d. Click the **Select** box to select the images you just uploaded, then click **Assign category** and choose "Acridotheres".
 - e. Repeat the above steps for the other categories.

Note: To train a model for classification, the data set must meet these requirements:

- There must be at least two categories.
- Each category must have at least five images.
- 4. From the Data set page, click **Train**. In the Train data set window, choose **Image classification** and keep the default values for all other settings, then click **Train**.
- 5. After training is complete, click **Deploy model**.

Important: Each deployed model uses one GPU.

6. Test the trained model. On the Deployed models page, open the model you just deployed. Scroll down to the Test Images area and input a test image.

The test result displays the uploaded picture with the resultant heat map overlayed, and gives the classification and the confidence of the classification. Multiple classes are returned with the decreasing levels of confidence for the different classes. The heat map is for the highest confidence classification and can help you determine whether the model has correctly learned the features of this classification. To hide classes with a lower confidence level, use the **Confidence threshold** slider.

The red area of the heat map corresponds to the areas of the picture that are of highest relevance. Use the slider to change the opacity of the heat map. Because the heat map is a square, the test image is compressed into a square. This might cause the image to look distorted, but it will reliably show you the areas that the algorithm identified as relevant.

If you are not satisfied with the result, use the information in this topic to refine the model: "Refining a model" on page 75. Otherwise, the model is ready to be used in production.

Related concepts:

"Working with the user interface" on page 51

The PowerAI Vision user interface is made up of these basic parts: the navigation bar, the side bar, the action bar, the data area, and the notification center.

"Understanding metrics" on page 79

PowerAI Vision provides several metrics to help you measure how effectively your model has been trained.

Related information:

Vision Service API documentation

Scenario: Detecting segmented objects in images

In this fictional scenario, you want to create a deep learning model to detect segmented objects, such as a bicycle with a rider standing in front of it. To accomplish this, you will import a COCO data set and train a Detectron model.

To create a deep learning model to detect segmented objects, you will perform the following steps:

- 1. "Import images and create a data set"
- 2. "Training a model" on page 93
- 3. "Deploying a trained model" on page 94

Import images and create a data set

First, create a data set and add images to it.

- 1. Log in to PowerAI Vision.
- 2. Click **Data Sets** in the navigation bar to open the Data Sets page. Create a new data set and give it a name.
- 3. From the COCO download site, click 2017 Train images to download the train2017.zip file.
- 4. Create a new file that contains just the images that you want from train2017 by running a command such as the following:
 - ls train2017 | grep jpg | head -20000 >/tmp/flist
- 5. From the COCO download site, click **2017 Train/Val annotations** to download the annotations_trainval2017.zip file.
- 6. From annotations_trainval2017.zip, extract the annotations/instances_train2017.json file, which is the COCO annotation file for object detection.
- 7. Add annotations/instances_train2017.json to the file of images that you created in step 4 and compress them into a zip file.
- 8. From your new data set, click Import file and select the zip file you just created.

Important: You cannot navigate away from the PowerAI Vision page or refresh until the upload completes. You can navigate to different pages within PowerAI Vision during the upload.

Training a model

Because the images are already labeled, you can now train your deep learning model. Training a model uses one GPU:

- 1. From the Data set page, click Train.
- 2. Fill out the fields on the Train Data set page. Select Object Detection and Segmentation (Detectron).
- 3. Click Train.
- 4. (Optional *Only supported when training for object detection*.) Stop the training process by clicking **Stop** training > Keep Model > Continue.

You can wait for the entire training model process complete, but you can optionally stop the training process when the lines in the training graph start to flatten out. This is because improvements in quality of training might plateau over time. Therefore, the fastest way to deploy a model and refine the data set is to stop the process before quality stops improving.

Note: Use early stop with caution when training segmented object detection models (such as with Detectron), because larger iteration counts and training times have been demonstrated to improve accuracy even when the graph indicates the accuracy is plateauing. The precision of the label is can still being improved even when the accuracy of identifying the object location stopped improving.

Important: If the training graph converges quickly and has 100% accuracy, the data set does not have enough information. The same is true if the accuracy of the training graph fails to rise or the errors in the graph do not decrease at the end of the training process. For example, a model with high accuracy might be able to discover all instances of different race cars, but might have trouble differentiating between specific race cars or those that have different colors. In this situation, add more images or video frames to the data set, label them, then try the training again.

Deploying a trained model

To deploy the trained model, follow these steps. Each deployed Detectron model takes one GPU:

- 1. Click **Models** from the menu.
- 2. Select the model you created in the previous section and click **Deploy**.
- **3**. Specify a name for the model, and click **Deploy**. The Deployed Models page is displayed, and the model is deployed when the status column displays **Ready**.
- 4. Double-click the deployed model to get the API endpoint and test other images against the model. For information about using the API see Vision Service API documentation.

Next steps

You can continue to refine the data set as much as you want. When you are satisfied with the data set, you can train the model again. This time when you train the model, you might want to train the model for a longer time to improve the overall accuracy of the model. The loss lines in the training model graph should converge to a stable flat line. The lower the loss lines are in the training graph the better. After the training completes, you can deploy the model again. You can double-click the deployed model to get the API endpoint and test other images or images against the model.

Administering PowerAl Vision

Use this information to administer PowerAI Vision, such as stopping, starting, and determining the status of the pods.

Start or stop PowerAl Vision

There are several situations when you might need to stop and start PowerAI Vision. For example, when upgrading or performing maintenance on the product or on the system, when troubleshooting a problem, and so on. Use these commands to start or stop PowerAI Vision, as appropriate:

powerai-vision-stop.sh
powerai-vision-start.sh

Determine the status of PowerAl Vision pods

When troubleshooting a problem with PowerAI Vision, you might need to check the status of the Docker pods that are part of PowerAI Vision. For example, if the product does not start, if it is returning errors, or if actions are not completing. Run kubectl get pods to see the status. For example:

	RESTARTS AGE
powerai-vision-mongodb-764f99fcf6-12nzd 1/1 Runni	g 0 12h
powerai-vision-portal-76fbc7db68-7rr47 1/1 Runni	g 0 12h
powerai-vision-postgres-55c6f7fcf6-42fbt 1/1 Runni	g 0 12h
powerai-vision-taskanaly-55bfb587d4-cvzln 1/1 Runni	g 0 12h
powerai-vision-ui-845d8c8d8-bmfw7 1/1 Runni	g 0 12h
powerai-vision-video-nginx-8474f7c44c-qmxm4 1/1 Runni	g 0 12h
powerai-vision-video-portal-5b76558784-8mb8d 1/1 Runni	g 0 12h
powerai-vision-video-rabmq-5d5d786f9f-nz7pn 1/1 Runni	g 0 12h
powerai-vision-video-redis-59c557b69-hf8pg 1/1 Runni	g 0 12h
powerai-vision-video-test-nginx-5dc6887666-19tb8 1/1 Runni	g 0 12h
powerai-vision-video-test-portal-54d85ff65b-945gp 1/1 Runni	g 0 12h
powerai-vision-video-test-rabmq-6858cc749-grhgm 1/1 Runni	g 0 12h
powerai-vision-video-test-redis-75977cdd8f-lbljb 1/1 Runni	g 0 12h

If one or more pods is not running, try stopping and restarting PowerAI Vision.

Managing users

There are two kinds of users in PowerAI Vision: administrators, and everyone else. The way you work with users and passwords differs, depending on how PowerAI Vision is installed.

PowerAI Vision uses Keycloak for user management and authentication. All users and passwords are maintained by Keycloak and stored in a Postgres database. A default user name of admin with a password of passw0rd are created at install time. You can add, remove, or modify users by using the **kubectl** command.

- "Types of users"
- "PowerAI Vision installed as stand-alone" on page 96
- "PowerAI Vision installed with IBM Cloud Private" on page 97

Types of users

Non-administrator users

Users other than the administrator can only see and edit resources that they created.

Administrator

The administrator user (admin) can see and manage all resources in PowerAI Vision regardless of who owns it. A default user name of admin with a password of passw0rd are created at install time. You can add, remove, or modify users by using the **kubectl** command. You should be aware of the following considerations when working with admin users:

Data sets

- The administrator can see and edit all data sets. That is, this user can add and delete files, create labels, assign categories, duplicate, rename, and delete the data set.
- If the administrator uploads a file to a different user's data set, it is listed as being owned by the data set owner.
- If the administrator duplicates a data set, the duplicate data set is owned by the administrator.

Models

- The administrator can see, rename, and delete all models, including after they are deployed.
- If the administrator trains a model, the training task and the generated model is owned by the administrator.
- If the administrator deploys a model, the deployed model is owned by the administrator.

PowerAl Vision installed as stand-alone

If you installed PowerAI Vision stand-alone, you can use the powerai_vision_users.sh script in the /opt/powerai-vision/bin/ directory to create, delete, modify, and list users.

Usage

```
powerai_vision_users.sh [command] [ --user name ] [ --password password ]
```

Command

Specifies the action to take.

create

Create a user in the PowerAI Vision instance. The user argument is required for this operation. You can set the password by one of these methods:

- Specify it with the command by using the password argument.
- Store it in the environment variable, VISION_USER_PASSWORD.

delete

Delete a user from the PowerAI Vision instance. The user argument is required for this operation.

list

List the currently created users for a specified PowerAI Vision instance.

modify

Modifies the user's password. The user argument is required for this operation. You can set the new password by one of these methods:

- Specify it with the command by using the password argument.
- Store it in the environment variable, VISION_USER_PASSWORD.

Name

The user name on which the command is to operate on.

Password

Optionally set a user's password when creating or modfying a user.

PowerAI Vision installed with IBM Cloud Private

- 1. Authenticate to the cluster, so that you can run kubectl commands. For example:
 - In an IBM Cloud Private 2.1.0 environment, run:
 - bx pr login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation
 - In an IBM Cloud Private 3.1.0 environment, run: cloudctl login -a https://<cluster-domain-name>:8443/ --skip-ssl-validation
- 2. Note your release name. In the example below, this is aivision.
- **3**. To manage users, run the following command:

```
kubectl run --rm -i --restart=Never usermgt --image=cluster-domain-name:8443/powerai-vision-usermgt:version -- action
--user newusername --password password --release release
```

The above command has the following variables:

- *action* can be one of these values: create, delete, modify, or list.
- *version* is the release number of the PowerAI Vision product. For example, 1.1.3.0. To find the correct value, view the configmap. For example:

\$ kubectl get cm NAME DATA AGE powerai-vision-v1.1.3-config 52 56d

The password argument is optional. You can set the password in one of these ways:

- The --password argument in powerai-vision-usermgt.
- The --env option for kubectl with the VISION_USER_PASSWORD environment variable. For example, add --env="VISION_USER_PASSORD=\${*MY_PASS*} to the kubectl run command.

Example: To create customusername with password custompassw0rd1234 on release aivision, run:

Example: To list users in the PowerAI Vision 1.1.3 deployment, run:

```
$ kubectl run --rm -i --restart=Never usermgt --image=powerai-vision-usermgt:1.1.3.0 -- list --release v111
If you don't see a command prompt, try pressing enter.
admin
testuser1
testuser2
```

Notes:

- If running in the non-default namespace, make sure to specify the --namespace option.
- The version tag on the container should match image.releaseTag in the values.yaml file.
- The argument release should match the release name you assigned when deploying the chart.
- There is not a typo with the spacing of the "--" before create. It should be --<SPACE>create<SPACE> --user username.... This is intentional and an artifact of how the commands are passed into the user management tool.

Installing a new SSL certificate in PowerAl Vision stand-alone

PowerAI Vision ships with a self-signed certificate that is used by default, but this can be replaced with a certificate generated for PowerAI Vision for secure communications. If you want to use your own certificate, follow these steps to update the PowerAI Vision configuration.

1. Shut down PowerAI Vision:

sudo /opt/powerai-vision/bin/powerai-vision-stop.sh

- 2. Edit /opt/powerai-vision/bin/config.sh and specify the following information:
 - TLS_CERT_PATH Path to your custom PEM encoded public key certificate.
 - TLS_KEY_PATH Path to the private key associated with the TLS_CERT_PATH certificate.
 - **INGRESS_HOSTS** The host names defined in your certificate that you wish to use to access PowerAI Vision.
- 3. Start PowerAI Vision:

\$ sudo /opt/powerai-vision/bin/powerai-vision-start.sh

PowerAl Vision utilities

PowerAI Vision includes these utilities for working with the product.

- "Administer"
- "Troubleshooting" on page 100
- "Cleanup and uninstall" on page 101

Administer

accept-powerai-vision-license

Usage

accept-powerai-vision-license.sh

Description

The accept-powerai-vision-license.sh utility is used to accept the product license. The environment variable IBM_POWERAI_VISION_LICENSE_ACCEPT can be set to yes or no to automatically accept or reject the license. Otherwise, the license is presented along with a prompt to accept:

Press Enter to continue viewing the license agreement, or, Enter "1" to accept the agreement, "2" to declin Print, "4" Read non-IBM terms.

Note: This is called by the startup script powerai_vision_start.sh the first time the application is started to ensure that the license is accepted. If not accepted, the product will not start.

Requirements

The user must have sudo/root permissions.

check-powerai-vision-license

Usage

check-powerai-vision-license.sh

Description

Checks whether the product license has already been accepted.

- If the license is accepted, the utility silently exits with success (0).
- If the license has not been accepted, the utility prints an error and exits with error (1).

Requirements

The user must have sudo/root permissions.

config.sh

Usage

config.sh

Description

This file can be used to specify the following configuration values for the application:

EXTERNAL_IP

An IP address for the web portal if it is different from the system host name.

TLS_CERT_PATH, TLS_KEY_PATH, INGRESS_HOSTS

Specifies custom TLS certificates to be used by the application. See "Installing a new SSL certificate in PowerAI Vision stand-alone" on page 97 for details.

Requirements

None - not an executable.

gpu_setup.sh

Usage

gpu_setup.sh

Description

Utility that checks the availability of GPUs on the system and the Docker setup to verify that it supports using GPUs in Docker containers. It is called by the powerai vision start.sh startup script.

Requirements

The user must have sudo/root permissions.

helm.sh

Usage

helm.sh [command]

Description

A wrapper for the Kubernetes Helm utility, which works with deployment charts. The helm.sh utility can be used to check the status of the PowerAI Vision deployment. See "Checking application deployment" on page 43 for details. For information about the Helm utility, see Using Helm.

Requirements

None.

kubectl.sh

Usage

kubectl.sh [command]

Description

A wrapper for the Kubernetes kubectl utility, which works with pods and deployments. The kubectl.sh utility can be used to check the status of the PowerAI Vision deployment. See these topics for details:

- "Checking Kubernetes services status" on page 35
- "Checking Kubernetes node status" on page 37
- "Checking application deployment" on page 43

For information about the kubectl utility, see Overview of kubectl.

Requirements

None.

load_images.sh

Usage

load_images.sh-f [<powerai-vision-images-release>.tar]

Description

Utility to load the PowerAI Vision Docker images, which are provided with the product installation package in the *<powerai-vision-images-release>*.tar file. The load_images.sh utility requires approximately 30 Gb of free space in the /var file system to extract and load the Docker images. Images are loaded in parallel, so if there are space limitations on the system, errors will only be output after all images have attempted to load. The docker

images command can be used to validate that all images have been loaded. See "Checking the application Docker images in standalone installation" on page 33 for details.

Requirements

The user must have Docker group permissions.

port.sh

Usage

port.sh

Description

A file that can be used to specify configuration values for the ports used by the application. This is only required if there are multiple web services running on the system.

POWERAI_VISION_EXTERNAL_HTTPS_PORT

Specifies the SSL port that the PowerAI Vision user interface will use. The default port is 443.

Requirements

None - not an executable.

powerai_vision_start.sh

Usage

powerai_vision_start.sh [-nD]

Description

Used to start the PowerAI Vision application and required Kubernetes services. This startup script runs some checks of system requirements that require elevated privileges, such as GPU availability. You can optionally specify the following flags:

-n or --nocheck

Suppress checks of the system environment. For example, SELinux contexts on GPU devices are checked and fixed if they are found to be incorrect. By default, checks are run and any issues found are fixed.

-D or --debug

Output debug information by using the -x bash flag.

Requirements

The user must have sudo/root permissions.

powerai_vision_stop.sh

Usage

powerai_vision_stop.sh

Description

Used to stop the PowerAI Vision application and required Kubernetes services.

Requirements

The user must have sudo/root permissions.

Troubleshooting

collect_logs.sh

Usage

collect_logs.sh

Description

Utility for collecting system logs and information, and PowerAI Vision application logs
and information. The utility creates a single tar.gz file with the logs and configuration files that can be provided to IBM support to investigate issues.

Requirements

The user must have sudo/root permissions.

Cleanup and uninstall

purge_data

Usage

purge_data.sh

Description

Remove log and runtime data used by the PowerAI Vision application. This **does not** remove the data sets and models created by application users. This data is in *<install dir>/volume*, and must be removed manually.

Requirements

The user must have the required file system permissions.

purge_images

Usage

purge_image.sh <release_tag>

Description

All PowerAI Vision Docker images matching the tag will be removed from the Docker repository. This script can be used to clean up images from a priorPowerAI Vision installation after an upgrade, or to remove PowerAI Vision images when uninstalling the product.

For example, to remove Docker images for the 1.1.3.0 release from the Docker repository, run this command:

purge_images 1.1.3.0

You can use the docker images command to see what containers are in your Docker repository that are be associated with previous releases and can be purged.

Requirements

The user must have Docker group permissions.

PowerAl Vision Inference Server

With a PowerAI Vision Inference server, you can quickly and easily deploy multiple trained models to a single server. These models are portable and can be used by many users and on different systems. This allows you to make trained models available to others, such as customers or collaborators.

- "Hardware requirements"
- "Software requirements" on page 104
- "Installing" on page 104
- "Deploying a trained model" on page 104
- "Deployment output" on page 105
- "Inference" on page 106
- "Inference output" on page 107
- "Stopping a deployed model" on page 108
- "Decrypting a trained model" on page 108

Hardware requirements

Hardware requirements

• For deployment, the amount of memory required depends on the type of model you want to deploy. To determine how large a deployed GoogLeNet, Faster R-CNN, Tiny Yolo v2, or Detectron model is, run nvidia-smi from the host after deployment. Find the corresponding PID that correlates to the model you deployed and look at the Memory Usage.

Example:

```
$ nvidia-smi
Tue Feb 26 09:12:59 2019
   -----
 NVIDIA-SMI 418.29 Driver Version: 418.29 CUDA Version: 10.1
GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
 Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.
_____+____+_____
 0 Tesla P100-SXM2... On | 00000002:01:00.0 Off | 0
N/A 36C P0 39W / 300W | 1853MiB / 16280MiB | 0% Default
  -----+
1 Tesla P100-SXM2... On 00000003:01:00.0 Off 0
N/A 38C P0 42W / 300W 4179MiB / 16280MiB 0% Default
2 Tesla P100-SXM2... On 0000000A:01:00.0 Off 0
N/A 63C P0 243W / 300W 3351MiB / 16280MiB 73% Default
 -----+
3 Tesla P100-SXM2... On 0000000B:01:00.0 Off 0
N/A 35C P0 31W / 300W 10MiB / 16280MiB 0% Default
+-----+----+
```

Processes: GPU PID	Туре	Process name	GPU Memory Usage
0 15735 0 16225 1 39541 1 86043 1 86299 2 103835	C C C C C C C	/opt/miniconda2/bin/python python python /opt/miniconda2/bin/python /opt/miniconda2/bin/python /opt/miniconda2/bin/python	958MiB 885MiB 2253MiB 958MiB 958MiB 3341MiB

• A custom model based on TensorFlow will take all remaining memory on a GPU. However, you can deploy it to a GPU that has at least 2GB memory.

Software requirements

Linux

- Red Hat Enterprise Linux (RHEL) 7.6 (little endian).
- Ubuntu 18.04 or later.

NVIDIA CUDA

- x86 9.2 or later drivers. For information, see the NVIDIA CUDA Toolkit website.
- ppc64le 10.1 or later drivers. For information, see the NVIDIA CUDA Toolkit website.

Docker

- Docker must be installed. The recommended version is 1.13.1 or later. Version 1.13.1 is installed with RHEL 7.6.
- Ubuntu Docker CE or EE 18.06.01
- When running Docker, nvidia-docker 2 is supported. For RHEL 7.6, see Using nvidia-docker 2.0 with RHEL 7.

Unzip The unzip package is required on the system to deploy the zipped models.

Installing

1. Download the install files by using one of these methods:

- Download the product tar file from the IBM Passport Advantage website.
- Download the product tar.gz file from Advanced Administration System (AAS). This system is also called Entitled Software Support (ESS).
- 2. Run the appropriate commands to install the product, depending on the platform you are installing on. There are RPM files for installation on RHEL (x86 and ppc64le) and DEB files for installation on Ubuntu (amd64 and ppc64le).

RHEL rpm -i file_name.rpm

Ubuntu

dpkg -i *file_name*.deb

Load the product Docker images with the appropriate container's tar file. The file name has this format: powerai-vision-inference-<arch>-containers-<release>.tar, where <arch> is x86 or ppc64le, and <release> is the product version being installed.

/opt/powerai-vision/dnn-deploy-service/bin/load_images.sh -f <tar_file>

PowerAI Vision Inference Server will be installed at /opt/powerai-vision/dnn-deploy-service.

Deploying a trained model

The following types of models can be deployed:

- Object detection using Faster R-CNN (default), tiny-YOLO V2, Detectron, custom TensorFlow models, and Keras models.
- Image classification using GoogLeNet (default) and custom TensorFlow models.

To deploy a model, run this command:

/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh

Note: The first time you run this command, you are prompted to accept the license agreement.

Usage:

./deploy_zip_model.sh -m <model-name> -p <port> -g <ppu> -t <time-limit> zipped_model_file

model-name

The docker container name for the deployed model.

port The port to deploy the model to.

gpu The GPU to deploy the model to. If specified as -1, the model will be deployed to a CPU.

Note: Detectron models cannot be deployed to a CPU.

time-limit

(Optional) Specify the time out limit for model deployment in seconds. The default value is 180 seconds.

zipped_model_file

The full path and file name of the trained model that was exported from PowerAI Vision. It can be an image classification model or an object detection model, but must be in zip format.

Examples:

```
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh --model dog --port 6001 --gpu 1 ./dog_classification.zip
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh --m car -p 6002 -g -1 /home/user/mydata/car.zip
/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m coco -p 6001 -g 1 /home/ycheng/model/new_models/cdb-co
```

Deployment output

There are several different results you might see when you deploy a model. For example:

Success

If a model is deployed successfully, it reports back with the message "Successfully deployed model."

/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m coco -p 6001 -g 1 /home/ycheng/model/new_models

Successfully deployed model.

Deployed in 22 seconds

Failure

If the deployment fails, it reports back with log information from the docker container, including error messages regarding the failure. Some possible error examples follow. See "Troubleshooting known issues - PowerAI Vision Inference Server" on page 124 for details about dealing with errors.

• Ran out of GPU memory

```
root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 701
Deployment failed. Here are logs before the failure:
```

```
File "/opt/detectron/detectron/core/test_engine.py", line 331, in initialize_model_from_cfg
model, weights_file, gpu_id=gpu_id,
```

```
File "/opt/detectron/detectron/utils/net.py", line 112, in initialize_gpu_from_weights_file
src blobs[src name].astype(np.float32, copy=False))
```

```
File "/usr/local/lib/python2.7/dist-packages/caffe2/python/workspace.py", line 321, in FeedBlob return C.feed_blob(name, arr, StringifyProto(device_option))
```

```
RuntimeError: [enforce fail at context_gpu.cu:359] error == cudaSuccess. 2 vs 0. Error at: /tmp/pytorch/caffe2
root : INFO Callback message: {'msgId': '6ef7e371-1209-47b3-94c3-940640324ac8', 'msgReturnCode': 'E
root : INFO Wait 5s for messaging completed...
[root@dldev4 ~]#
```

• Invalid GPU ID specified

[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 70 Deployment failed. Here are logs before the failure: Failed building wheel for nvidia-ml-py Running setup.py clean for nvidia-ml-py Failed to build nuiding mlanu

```
Failed to build nvidia-ml-py
Installing collected packages: nvidia-ml-py
```

Running setup.py install for nvidia-ml-py: started Running setup.py install for nvidia-ml-py: finished with status 'done' Successfully installed nvidia-ml-py-375.53.1 You are using pip version 8.1.1, however version 19.0.3 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Cannot find gpu 5. [root@dldev4 ~]#

• Processing was interrupted:

/usr/bin/docker-current: Error response from daemon: Conflict. The container name "/decrypt" is already in use by You have to remove (or rename) that container to be able to reuse that name.

To fix the problem, run these commands:

docker stop decrypt docker rm decrypt

Tried to deploy a Detectron model on a CPU:

[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m durga_detectron_cars8 -p 7018 Deployment failed. Here are logs before the failure: Failed building wheel for nvidia-ml-py Running setup.py clean for nvidia-ml-py Failed to build nvidia-ml-py Installing collected packages: nvidia-ml-py: Running setup.py install for nvidia-ml-py: started Running setup.py install for nvidia-ml-py: finished with status 'done' Successfully installed nvidia-ml-py-375.53.1 You are using pip version 8.1.1, however version 19.0.3 is available. You should consider upgrading via the 'pip install --upgrade pip' command. We currently do not support CPU mode for Detectron models. [root@dldev4 ~]#

Deployment times out:

[root@dldev4 ~]# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -t 15 -m durga_custom_cars3 -p 70 Deployment timed out at 15 seconds

If the deployment times out, increase the time limit by using the -t option.

Inference

Inference can be done by using the deployed model with a local file or an image URL.

Optional Parameters:

confthre

Confidence threshold. Specify a value in the range [0.0,1.0], treated as a percentage. Only results with a confidence greater than the specified threshold are returned. The smaller confidence threshold you specify, the more results are returned. If you specify 0, many, many results will be returned because there is no filter based on the confidence level of the model. The default value is 0.5.

containRle

This option is only available for Detectron models. If this is true, the inference output will include RLEs of the segments. The default value is false.

containPolygon

This option is only available for Detectron models. If it is set to true, the polygon for the segments is included in the output. The default value is true.

GET method:

Required Parameters:

imageurl

The URL address of the image. The URL must start with http:// or https://.

Example:

curl -G -d "imageurl=https://ibm.box.com/shared/static/i98xa4dfpff6jwv0lxmcu4lybr8b5kxj.jpg&confthre=0.7&containPoly

POST method:

Required Parameters:

imagefile

The name of the image file to be used for inference.

Example:

```
curl -F "imagefile=@$DIR/data/bird.jpg" \
    -F "confthre=0.7" \
    -F "containPolygon=false" \
    -F "containRle=true" \
    http://localhost:5000/inference
```

Example 1 - Classification:

curl -F "imagefile=@/home/testdata/cocker-spaniel-dogs-puppies-1.jpg" http://localhost:6001/inference

Example 2 - Object detection:

curl -G -d "imageurl=https://assets.imgix.net/examples/couple.jpg" http://localhost:6002/inference

Example 3 – Object detection of a tiny YOLO model with confidence threshold:

curl -F "imagefile=@/home/testdata/Chihuahua.jpeg" -F "confthre=0.8" http://localhost:6001/inference

Note: Confidence threshold works for Faster R-CNN, Detectron, and tiny YOLO object detection models and GoogLeNet image classification models.

Example 4 - Object detection of a Detectron model that contains polygon segments instead of RLEs (default setting)

curl -F "imagefile=@/home/ycheng/model/new_models/pics/cars.jpg" -F "confthre=0.98" http://localhost:6001/inference

Example 5 - Object detection of a Detectron model that contains RLE segments instead of a polygon:

curl -F "imagefile=@/home/ycheng/model/new_models/pics/cars.jpg" -F "confthre=0.98" -F "containRle=true" -F "containPoly

Inference output

The PowerAI Vision Inference Server can deploy both image classification models and object detection models.

Image classification model

A successful classification will report something similar to the following:

Example 1 output - success

{"classified": {"Cocker Spaniel": 0.93}, "result": "success"}

The image has been classified as a Cocker Spaniel with a confidence of .93.

Example 1 output - fail {"result": "fail"}

The image could not be classified. This might happen if the image could not be loaded, for example.

Object detection model

A successful detection will report something similar to the following:

Example 2 output - success

The cars in the image are located at the specified coordinates. The confidence of each label is given.

Example 2 output - success
{"classified": [], "result": "success"}

Object detection was carried out successfully, but there was nothing to be labeled that has confidence above the threshold.

Example 2 output - fail
{"result": "fail"}

Objects could not be detected. This might happen if the image could not be loaded, for example.

Example 4 output - success

The output includes a rectangle and polygon.

{"classified": [{"confidence": 0.9874554872512817, "ymax": 244, "label": "car", "xmax": 391, "xmin": 291, "ymin": 1

Example 5 output - success

The output includes a rectangle and rle.

{"classified": [{"confidence": 0.9874554872512817, "ymax": 244, "rle": "RXb3h0e;e0^02nDcN1:b1010002000000100101N2

Stopping a deployed model

To stop the deployed model, run the following command. When you stop the deployed model, the GPU memory is made available.

docker stop <model-name>
docker rm <model-name>

Example 1: docker stop dog; docker rm dog

Example 2:

docker stop car; docker rm car

Decrypting a trained model

You can decrypt a model that was trained by using PowerAI Vision by running decrypt_zip_model.

```
Usage: /opt/powerai-vision/dnn-deploy-service/bin/decrypt_zip_model.sh [-h|--help] | [ [-o
string ] model_file.zip]
```

output

Specifies the file name for the output decrypted model.

model_file

A trained model exported from PowerAI Vision.

Example:

```
/opt/powerai-vision/dnn-deploy-service/bin/decrypt_zip_model.sh -o car_frcnn_decrypted.zip
car_frcnn.zip
```

This will generate a new zip file car_frcnn_decrypted.zip, which is not password protected.

Inference on embedded edge devices

Using edge computing for your inference models helps save processing time by removing latency issues, ensures security, and also decreases bandwidth usage. This topic describes how to use PowerAI Vision with embedded edge devices.

- A full end to end use case is available if you use the DeepRed FPGA by V3 Technology that takes camera input, analyzes the video, and outputs the video with bounding-boxes on an HDMI attached device. See the section "Inference on DeepRED" for details.
- If you want to create your own solution or have a different FPGA board, then use the information in this section: "Inference with a custom solution."

Inference on DeepRED

DeepRED is an embedded artificial intelligence development system that supports PowerAI Vision. It lets you quickly deploy the trained model for testing and production.

Generate an IP core for use with DeepRED:

- 1. Perform customization. For DEEPRED this is not optional. If they want to use DEEPRED, they need to change the ZC706 to DEEPRED in the configmap (both instances of it). They should not add custom DSP_NUM, etc.
- 2. Perform optional customization.
 - a. On the PowerAI Vision host operating system, run the appropriate command.
 - For a standard install:
 - \$ /opt/powerai-vision/bin/kubectl.sh edit configmap powerai-vision-config
 - For PowerAI Vision installed on IBM Cloud Private:
 - \$ kubectl edit configmap powerai-vision-release_name-config
 - b. Find the row beginning EMB_COD_IMAGE in the configuration file and replace ZC706 with DEEPRED:
 "EMB COD IMAGE": ["DEEPRED, DEEPRED, powerai-vision-dnn-edge:1.1.3.0"],
 - c. Save and exit.
- **3**. Restart PowerAI Vision by running the appropriate command. The deleted pods will automatically restart.
 - For a standard install:
 - \$ /opt/powerai-vision/bin/kubectl.sh delete pod -1 app=powerai-vision
 - For PowerAI Vision installed on IBM Cloud Private:
 - \$ kubect1 delete pod -1 app=powerai-vision-release_name
- 4. Train your model.
 - On the Train data set page, for **Type of training**, select **Object detection**.
 - Under Advanced options, choose Optimized for speed
- 5. Copy the IP core file for compilation. The generated FPGA IP core is named *UUID*-ipcore.zip, where *UUID* is the UUID of the trained model. It is stored in the following location:
 - For a standard install: /opt/powerai-vision/volume/data/trained-models.
 - For PowerAI Vision installed on IBM Cloud Private, it is stored in your Persistent Volume under `<PATH_TO_VOLUME>/data/trained-models.

Inference with a custom solution

Using a custom solution requires appropriate hardware and software, as well as FPGA development skills. You must be able to:

- Take an existing IP core and use Vivado to merge it into a custom solution. Refer to the PIE DNN Accelerator IP Integration Guide.pdf for instructions to integrate the generated DNN IP core into your project.
- Set up and use Vivado, Petalinux, and other software.

Environment requirements

- A chip set that can provide enough BRAM, such as Xilinx 7035 or later
- A board with PL side (not just PS side) DRAM so that it can provide sufficient bandwidth between the FPGA and DRAM.

Follow these steps to generate an IP core for use with a custom solution. The examples included are for a ZC706 card:

1. Perform optional customization.

By default, PowerAI Vision is configured to use the following resources on a ZC706 card. However, you can customize these values.

DSP_NUM=700 RAM18E_NUM=800 DDR_BANDWIDTH=80000.0 DDR_DATA_WIDTH=512 FPGA_TYPE=xc7z045ffg900-2

- a. On the PowerAI Vision host operating system, run the appropriate command.
 - For a standard install:
 - \$ /opt/powerai-vision/bin/kubectl.sh edit configmap powerai-vision-config
 - For PowerAI Vision installed on IBM Cloud Private:
 - \$ kubectl edit configmap powerai-vision-release_name-config
- b. Find the row beginning EMB_COD_IMAGE in the configuration file and input your custom values.

For example, for a ZC706 card, replace **ZC706** with the appropriate values for your card:"EMB_COD_IMAGE": ["ZC706,**ZC706**,powerai-vision-dnn-edge:1.1.3.0"], as shown here: "EMB_COD_IMAGE": ["ZC706,DSP_NUM=700:RAM18E_NUM=800:DDR_BANDWIDTH=80000.0: DDR_DATA_WIDTH=512:FPGA_TYPE=xcvu9pl2fsgd2104e,powerai-vision-dnn-edge:1.1.3.0"],

- c. Save and exit.
- 2. Restart PowerAI Vision by running the appropriate command. The deleted pods will automatically restart.
 - For a standard install:
 - \$ /opt/powerai-vision/bin/kubectl.sh delete pod -l app=powerai-vision
 - For PowerAI Vision installed on IBM Cloud Private:
 - \$ kubect1 delete pod -1 app=powerai-vision-release_name
- 3. Train your model.
 - On the Train data set page, for **Type of training**, select **Object detection**.
 - Under Advanced options, choose Optimized for speed
- 4. Copy the IP core file for compilation. The generated FPGA IP core is named *UUID*-ipcore.zip, where *UUID* is the UUID of the trained model. It is stored in the following location:
 - For a standard install: /opt/powerai-vision/volume/data/trained-models.
 - For PowerAI Vision installed on IBM Cloud Private, it is stored in your Persistent Volume under `<PATH_TO_VOLUME>/data/trained-models.

Troubleshooting and contacting support

To isolate and resolve problems with your IBM products, you can use the following troubleshooting and support information. This information contains instructions for using the problem-determination resources that are provided with your IBM products, including PowerAI Vision.

Troubleshooting known issues - PowerAI Vision standard install

Following are some problems you might encounter when using PowerAI Vision, along with steps to fix them.

- "The PowerAI Vision user interface does not work"
- "The PowerAI Vision user interface is not accessible" on page 112
- "Resource pages are not being populated in the user interface" on page 112
- "Unexpected / old pages displayed when accessing the user interface" on page 113
- "PowerAI Vision does not play video" on page 113
- "PowerAI Vision cannot train or deploy models after reboot" on page 113
- "Changing the port for the PowerAI Vision user interface" on page 113
- "Auto detection video does not play in Firefox browser" on page 114
- "Out of space error from load_images.sh" on page 114
- "GPUs are not available for training or inference" on page 115
- "I forgot my user name or password" on page 115
- "PowerAI Vision cannot train a model" on page 116
- "Training or deployment hangs Kubernetes pod cleanup" on page 116
- "Training fails with error indicating "You must retrain the model."" on page 117
- "Model fails to deploy with time out message" on page 117
- "Model training and inference fails" on page 118
- "Unexpected inference result using image with EXIF Orientation" on page 118
- "Model accuracy value is unexpected" on page 118
- "Deployed models stuck in "Starting"" on page 118
- "Auto labeling of a data set returns "Auto Label Error"" on page 119
- "PowerAI Vision does not start" on page 119
- "PowerAI Vision application does not start on Ubuntu 18.04" on page 120
- "PowerAI Vision fails to start Kubernetes connection issue" on page 121
- "PowerAI Vision startup hangs helm issue" on page 121
- "Helm status errors when starting PowerAI Vision" on page 122
- "Uploading a large file fails" on page 123
- "Some PowerAI Vision functions don't work " on page 123

The PowerAl Vision user interface does not work

Problem

You cannot label objects, view training charts, or create categories.

Solution

- Verify that you are using a supported web browser. The following web browsers are supported:
- Google Chrome Version 60, or later

• Firefox Quantum 59.0, or later

The PowerAl Vision user interface is not accessible

Problem

The PowerAI Vision user interface cannot be accessed using a browser and you performed the following checks:

- · Checking Kubernetes node status indicates the following:
 - The PowerAI Vision application appears to be good.
 - The nginx-ingress-lb-ppc64le pod status is Running, but it is not "ready". That is, Ready lists 0/1 instead of 1/1.

See "Checking Kubernetes node status" on page 37 for instructions.

- There appears to be no listener on the port.
- The nginx-ingress-lb-ppc64le pod log has errors indicating "Too many open files".
- The host system has a high core count, for example, 160. For example:

```
# more /proc/cpuinfo | grep processor | wc -1
160
```

Solution

To allow the pod to start successfully, edit the pkg/kubernetes/ingress-controller.yaml file in the product installation directory (default **/opt/powerai-vision**), and add the following line to the "data" stanza:

worker-processes: "2"

Example

```
apiVersion: v1
kind: ConfigMap
metadata:
   name: nginx-load-balancer-conf
   namespace: kube-system
data:
   proxy-body-size: '0'
   disable-access-log: "true"
   use-port-in-redirects: "true"
   enable-vts-status: "false"
   worker-processes: "2"
```

The pod periodically attempts to restart, but you can force a restart using kubectl delete pod.

Example:

```
# /opt/powerai-vision/bin/kubectl get pods -n kube-system
NAME
                                                        RESTARTS
                                                                   AGE
                                      READY
                                              STATUS
coredns-76f484447b-k8fp5
                                      1/1
                                              Running
                                                      Θ
                                                                   23m
nginx-ingress-lb-ppc64le-44vtl
                                      0/1
                                              Running
                                                        8
                                                                   23m
nvidia-device-plugin-daemonset-28sks
                                      1/1
                                                                   23m
                                              Running
                                                        0
tiller-deploy-7f65888dc8-n2lz7
                                      1/1
                                              Running
                                                        0
                                                                   23m
# /opt/powerai-vision/bin/kubectl delete pod nginx-ingress-lb-ppc64le-44vtl -n kube-system
pod "nginx-ingress-lb-ppc64le-44vtl" deleted
```

For full details, see this topic in the IBM Cloud Private Knowledge CenterIngress controller reported: epoll_create() failed (24: Too many open files).

Resource pages are not being populated in the user interface

Problem

Resource pages, such as data sets and models, are not being populated. Notifications indicate that there is an error obtaining the resource. For example, "Error obtaining data sets."

Solution

Check the status of the powerai-vision-portal pod. This pod provides the data to the user interface, and until it is ready (1/1) with a status of Running, these errors will occur. See "Checking Kubernetes node status" on page 37 for instructions.

If the application is restarting, there is an expected delay before all services are available and fully functioning. Otherwise, this may indicate an unexpected termination (error) of the powerai-vision-portal pod. If that happens, follow these instructions: "Gather PowerAI Vision logs and contact support" on page 127.

Unexpected / old pages displayed when accessing the user interface

Problem

After updating, reinstalling, or restarting PowerAI Vision, the browser presents pages that are from the previous version or are stale.

Solution

This problem is typically caused by the browser using a cached version of the page. To solve the problem, try one of these methods:

- Use a Firefox Private Window to access the user interface.
- Use a Chrome Incognito Window to access the user interface.
- Bypass the browser cache:
 - In most Windows and Linux browsers: Hold down Ctrl and press F5.
 - In Chrome and Firefox for Mac: Hold down △ Cmd and △ Shift and press R.

PowerAl Vision does not play video

Problem

You cannot upload a video, or after the video is uploaded the video does not play.

Solution

Verify that your video is a supported type:

- Ogg Vorbis (.ogg)
- VP8 or VP9 (.webm)
- H.264 encoded videos with MP4 format (.mp4)

If your video is not in a supported format, transcode your video by using a conversion utility. Such utilities are available under various free and paid licenses.

PowerAl Vision cannot train or deploy models after reboot

Problem

On RHEL 7.6 systems with CUDA 10.1, the SELinux context of NVIDA GPU files is lost at boot time. SELinux then prevents PowerAI Vision from using the GPUs for training and deployment.

Solution

Restart PowerAI Vision by running **powerai_vision_stop.sh** / **powerai_vision_start.sh**. This resets the problematic SELinux contexts if they are incorrect, restoring the ability to access GPUs for training and inference.

Changing the port for the PowerAl Vision user interface

Problem

By default, the PowerAI Vision user interface uses port 443, forwarded from port 80.

Solution

If you need to use either port for something else, follow these steps to change the PowerAI Vision port.

- 1. If PowerAI Vision is running, use the following command to stop it:
 - \$ /opt/powerai-vision/bin/powerai_vision_stop.sh
- 2. Change /opt/powerai-vision/bin/port.sh.
 - Update this line with the appropriate port: POWERAI_VISION_EXTERNAL_HTTP_PORT=80.
 - Update this line with the appropriate port: POWERAI_VISION_EXTERNAL_HTTPS_PORT=443.
- **3**. Make sure the new port is open in your operating system's firewall by running the following command:

\$ /opt/powerai-vision/sbin/firewall.sh

4. Restart PowerAI Vision by running the following command:

\$ /opt/powerai-vision/bin/powerai_vision_start.sh

Auto detection video does not play in Firefox browser

Problem

The Firefox browser reports "The media playback was aborted due to a corruption problem or because the media used features your browser did not support". This happens in versions of the Firefox browser that do not support YUV444 chroma subsampling, which prevents the video from being played successfully.

Solution

Use a version of Firefox that supports YUV444 chroma subsampling or use a different browser (such as Chrome) that does support it.

Out of space error from load_images.sh

Problem

When installing the product, the load_images.sh script is used to load the PowerAI Vision Docker images. The script might terminate with errors, the most frequent issue being insufficient disk space for loading the Docker images.

For example, the /var/lib/docker file system can run out of space, resulting in a message indicating that an image was not fully loaded. The following output shows that the Docker image powerai-vision-dnn was not able to be fully loaded because of insufficient file system space:

```
root@kottos-vm1:~# df --output -BG "/var/lib/docker/"
Filesystem Type Inodes IUsed IFree IUse% IG-blocks Used Avail Use% File M
/dev/vda2 ext4 8208384 595697 7612687 8% 124G 81G 37G 70% /var/lib/docker//
                                                       Mounted on
root@kottos-vm1:~#

      d0ea7f5f6aab:
      Loading layer
      [=========]
      2.689MB/2.689MB

      62d3d10c6cc2:
      Loading layer
      [========]
      9.291MB/9.291MB

Error processing tar file(exit status 1): write /usr/bin/grops: no space left on device
[ FAIL ] Some images failed to load
[ FAIL ] Failure info:
       Loading the PowerAI Vision docker images...
root@kottos-vm1:~#
```

This situation can also be noted in the output from /opt/powerai-vision/bin/kubectl get pods. This command is described in "Checking the application and environment" on page 33, which shows images that could not be loaded with a status of ErrImagePull or ImagePullBackOff.

Solution

The file system space for /var/lib/docker needs to be increased, even if the file system is not completely full. There might still be space in the file system where /var/lib/docker is located, but insufficient space for the PowerAI Vision Docker images. There are operating system mechanisms to do this, including moving or mounting /var/lib/docker to a file system partition with more space.

After the error situation has been addressed by increasing or cleaning up disk space on the /var/lib/docker/ file system, re-run the load_images.sh script to continue loading the images. No clean up of the previous run of load_images.sh is required.

I forgot my user name or password

Problem

You forgot your user name or password and cannot log in to the PowerAI Vision GUI.

Solution

PowerAI Vision uses an internally managed users account database. To change your user name or password, see "Logging in to PowerAI Vision" on page 49.

GPUs are not available for training or inference

Problem

If PowerAI Vision cannot perform training or inference operations, check the following:

• Verify that the nvidia smi output shows all relevant information about the GPU devices. For example, the following output shows Unknown error messages indicating that the GPUs are not in the proper state:

Mon Dec 3 15:43:07 2018

NVID	IA-SMI	410.7	2 Driver	Version:	410.72	CUDA Versio	on: 10.0
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	Bus-Id	Disp.A Memory-Usage	Volatile GPU-Util	Uncorr. ECC Compute M.
 0 N/A	Tesla 31C	V100- P0	SXM2 Off 49W / 300W	+	4:04:00.0 Off Error	0%	0 Default

• Verify that the **nvidia-persistenced** service is enabled and running (active) by using the command sudo systemctl status nvidia-persistenced:

systemctl status nvidia-persistenced

```
* nvidia-persistenced.service - NVIDIA Persistence Daemon
```

```
Loaded: loaded (/etc/system/nvidia-persistenced.service; enabled; vendor preset: disabled)
Active: active (running) since Tue 2018-11-13 08:41:22 CST; 2 weeks 6 days ago
```

Solution

- If the GPU status indicates errors and the **nvidia-persistenced** service is not enabled and active, enable and start the service:
 - 1. Enable the service:

sudo systemctl enable nvidia-persistenced

 Start the service: sudo systemctl start nvidia-persistenced • If the **nvidia-persistenced** service is enabled but the Persistence-M state still shows Off, verify that the udev rules have been set correctly if the system is a RHEL server. See this topic for details: "NVIDIA Components: IBM POWER9 specific udev rules (Red Hat only)" on page 20.

PowerAI Vision cannot train a model

Problem

The model training process might fail if your system does not have enough GPU resources.

Solution

- If you are training a data set for image classification, verify that at least two image categories are defined, and that each category has a minimum of five images.
- If you are training a data set for object detection, verify that at least one object label is used. You must also verify that each object is labeled in a minimum of five images.
- Ensure that enough GPUs are available. GPUs are assigned as follows:
 - Each active training job takes one GPU.
 - Each Tiny YOLO V2, Detectron, or custom deployed model takes one GPU. The GPU group is listed as '-', which indicates that this model uses a full GPU and does not share the resource with any other deployed models.
 - Multiple Faster R-CNN and GoogLeNet models are deployed to a single GPU. PowerAI Vision uses packing to deploy the models. That is, the model is deployed to the GPU that has the most models deployed on it, if there is sufficient memory available on the GPU. The GPU group can be used to determine which deployed models share a GPU resource. To free up a GPU, *all* deployed models in a GPU group must be deleted (undeployed).

Note: PowerAI Vision leaves a 500MB buffer on the GPU.

If a training job appears to be hanging, it might be waiting for another training job to complete, or there might not be a GPU available to run it.

To determine how many GPUs are available on the system, view the GPU usage on the Models or Trained Models page in the user interface.

If all the systems GPUs are in use, you can either delete the group of deployed models that are using a GPU (making the models unavailable for inference) or you can stop model that is being trained. The deployed models that share a GPU have the same group number. To free up a GPU, all deployed models in one group must be deleted.

- To delete a deployed model, click **Deployed Models**. Next, select the model that you want to delete and click **Delete**. The trained model is not deleted from PowerAI Vision. You can redeploy the model later when more GPUs are available.
- To stop a training model that is running, click **Models**. Next, select the model that has a status of **Training in Progress** and click **Stop Training**.

Training or deployment hangs - Kubernetes pod cleanup

Problem

You submit a job for training or deployment, but it never completes. When doing training or deployments, sometimes some pods that are running previous jobs are not terminated correctly by the Kubernetes services. In turn, they hold GPUs so no new training or deployment jobs can complete. They will be in the Scheduled state forever.

To verify that this is the problem, run kubectl get pods and review the output. The last column shows the age of the pod. If it is older than a few minutes, use the information in the Solution section to solve the problem.

Example:

```
kubectl get pods
powerai-vision-infer-ic-06767722-47df-4ec1-bd58-91299255f6hxxzk 1/1 Running 0 22m
powerai-vision-infer-ic-35884119-87b6-4d1e-a263-8fb645f0addqd2z 1/1 Running 0 22m
powerai-vision-infer-ic-7e03c8f3-908a-4b52-b5d1-6d2befec69ggqw5 1/1 Running 0 5h
powerai-vision-infer-od-c1c16515-5955-4ec2-8f23-bd21d394128b6k4 1/1 Running 0 3h
```

Solution

Follow these steps to manually delete the deployments that are hanging.

1. Determine the running deployments and look for those that have been running longer than a few minutes:

kubectl get deployments

2. Delete the deployments that were identified as hanging in the previous step.

kubectl delete deployment deployment_id

3. You can now try the training or deploy again, assuming there are available GPUs.

Note: When a deployment is manually deleted, vision-service might try to recreate it when it is restarted. The only way to force Kubernetes to permanently delete it is to remove the failing model from PowerAI Vision.

Training fails with error indicating "You must retrain the model."

Problem

Very long label names can result in training failures. Label or class names used in the data set are longer than 64 characters, and/or international characters that have multi-byte representation are used.

Solution

Label and class names should be 64 characters or less. Longer label names are supported but using international characters or very long label names can cause an internal metadata error, resulting in a training failure.

Model fails to deploy with time out message

Problem

When using deploy_zip_model.sh to deploy a PowerAI Vision model, the action fails with a message of "Deployment timed out at 180 seconds".

Solution

This can occur if the GPU specified for the deployment no longer has available memory to deploy the model. Check the GPU usage of the GPU using the **nvidia-smi** command as described in this topic: "Checking system GPU status" on page 47. For example, if the model failed to deploy to GPU 1, use nvidia-smi -i 1 to check the usage of GPU 0 and stop or delete some of the models currently deployed to the GPU if there are limited memory resources. The following output demonstrates a situation where the GPU does not have sufficient memory to deploy the model:

```
# /opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m 8193_cars_custom_COD_model -p 7005 -g 1 /roo
chcon: can't apply partial context to unlabeled file '/root/inference-only-testing/new_models/cars-tf-cod.zip'
WARNING: This might cause model file permission issue inside container
chcon: can't apply partial context to unlabeled file '/tmp/aivision_inference'
WARNING: This might cause permission issue inside container
```

	1 N/A	Tesla P 32C	100-P(P0	CIE 31W /	0ff 250W	00000000:81:00.0 Off 15919MiB / 16280MiB	0%	0 Default	
+	Proce	esses:						GPU Memory	⊦
	GPU =====	P.	ID	Туре ======	Process	name ====================================		Usage ======	
	1	136	91 65	C C	python python			2133MiB 2065MiB	
	1	179	55	C	python			958MiB	
	1 1	1883 1954	32 45	C C	python python			742MiB 10009MiB	
4									÷

Model training and inference fails

Problem

The NVIDIA GPU device is not accessible by the PowerAI Vision Docker containers. To confirm this, run kubectl logs -f _powerai-vision-portal-ID_ and then check pod_powerai-visionportal-ID_powerai-vision-portal.log for an error indicating error == cudaSuccess (30 vs. 0): F0731 20:34:05.334903 35 common.cpp:159] Check failed: error == cudaSuccess (30 vs. 0) unknown error *** Check failure stack trace: *** /opt/py-faster-rcnn/FRCNN/bin/train_frcnn.sh: line 24: 35 Aborted (core dumped) _train_frcnn.sh

Solution

Use sudo to alter SELINUX permissions for all of the NVIDIA devices so they are accessible via the PowerAI Vision Docker containers.

sudo chcon -t container_file_t /dev/nvidia*

Unexpected inference result using image with EXIF Orientation

Problem

An unexpected result is received when using the REST API to perform an inference operation when using an image with EXIF Orientation specified. The PowerAI Vision deployed model does not use the EXIF Orientation to perform rotations of the provided image, which may cause an unexpected inference result.

Solution

Rotate the image prior to providing to the REST API for inference. For example, the Linux tool exiftran can be used to rotate the image. Then, pass the rotated image to the REST API for inference.

Model accuracy value is unexpected

Problem

A trained model has an unexpected value for accuracy, such as 0%, 100%, or "Unknown". This happens when there is not enough data for training to work properly.

Solution

Ensure that there are enough images in the data set for each category or object label. For details, see "Data set considerations" on page 56.

Deployed models stuck in "Starting"

Problem

PowerAI Vision models remain in "Starting" state and do not become available for inference operations.

Solution

Delete and redeploy the models. One possible cause is that the PowerAI Vision models were

deployed in a prior version of the product that is not compatible with the currently installed version. For example, this can happen after upgrading.

Auto labeling of a data set returns "Auto Label Error"

Problem

Auto labeling cannot be performed on a data set that does not have unlabeled images, unless some of the images were previously labeled by the auto label function.

Solution

Ensure that the **Objects** section of the data set side bar shows there are objects that are "Unlabeled". If there are none, that is, if "Unlabeled (0)" is displayed in the side bar, add new images that are unlabeled or remove labels from some images, then run auto label again.

PowerAl Vision does not start

Problem

When you enter the URL for PowerAI Vision from a supported web browser, nothing is displayed. You see a 404 error or Connection Refused message.

Solution

Complete the following steps to solve this problem:

1. Verify that IP version 4 (IPv4) port forwarding is enabled by running the /sbin/sysctl net.ipv4.conf.all.forwarding command and verifying that the value for net.ipv4.conf.all.forwarding is set to 1.

If IPv4 port forwarding is not enabled, run the **/sbin/sysctl -w net.ipv4.conf.all.forwarding=1** command. For more information about port forwarding with Docker, see UCP requires IPv4 IP Forwarding in the Docker success center.

2. If IPv4 port forwarding is enabled and the docker0 interface is a member of the trusted zone, check the Helm chart status by running this script:

sudo /opt/powerai-vision/bin/helm.sh status vision

In the script output, verify that the PowerAI Vision components are available by locating the Deployment section and identifying that the AVAILABLE column has a value of 1 for each component. The following is an example of the output from the **helm.sh status vision** script that shows all components are available:

(RESOURCES:					
	==> v1beta1/Deployment					
	NAME	DESIRED	CURRENT	UP-TO-DATE	AVAILABLE	AGE
	powerai-vision-mongodb	1	1	1	1	4d
	powerai-vision-portal	1	1	1	1	4d
	powerai-vision-postgres	1	1	1	1	4d
	powerai-vision-taskanaly	1	1	1	1	4d
	powerai-vision-ui	1	1	1	1	4d
	powerai-vision-video-nginx	1	1	1	1	4d
	powerai-vision-video-portal	1	1	1	1	4d
	powerai-vision-video-rabmq	1	1	1	1	4d
	powerai-vision-video-redis	1	1	1	1	4d
	powerai-vision-video-test-nginx	1	1	1	1	4d
	powerai-vision-video-test-portal	1	1	1	1	4d
	powerai-vision-video-test-rabmq	1	1	1	1	4d
	powerai-vision-video-test-redis	1	1	1	1	4d

If you recently started PowerAI Vision and some components are not available, wait a few minutes for these components to become available. If any components remain unavailable, gather the logs and contact IBM Support, as described in this topic: "Gather PowerAI Vision logs and contact support" on page 127.

3. If the docker0 interface is a member of a trusted zone and all PowerAI Vision components are available, verify that the firewall is configured to allow communication through port 443 (used to connect to PowerAI Vision) by running this command:

sudo firewall-cmd --permanent --zone=public --add-port=443/tcp

PowerAI Vision application does not start on Ubuntu 18.04

Problem

When the PowerAI Vision application starts, pods are crashing and it takes a long time to start up. Example kubectl get pods output:

				0	-	
#	./kubectl	get	pods			

NAME	READY	STATUS	RESTARTS	AGE
powerai-vision-dnn-microservices-ded7344d-12eb-45dd-b851-bjczm2	0/1	Running	0	6m15s
powerai-vision-fpga-device-plugin-bwdkr	1/1	Running	0	6m12s
powerai-vision-keycloak-9d8677bdd-v8hkt	0/1	Init:0/1	0	6m12s
powerai-vision-mongodb-59b864854-vhj9j	1/1	Running	0	6m12s
powerai-vision-portal-744c8b8c55-6mz4g	0/1	Init:1/2	0	6m12s
powerai-vision-postgres-f6fc6d9c9-rz5tt	1/1	Running	0	6m12s
powerai-vision-taskanaly-7456d64c69-ttk2j	1/1	Running	0	6m12s
powerai-vision-ui-dc876bb9f-rj8w9	0/1	CrashLoopBackOff	5	6m12s
powerai-vision-video-nginx-9b4f7f848-nblbt	0/1	CrashLoopBackOff	5	6m12s
powerai-vision-video-portal-748d49ff84-xq752	0/1	Init:0/1	0	6m12s
powerai-vision-video-rabmq-5cf94f96d6-fpgv5	1/1	Running	0	6m12s
powerai-vision-video-redis-6ccfddb554-66knv	1/1	Running	0	6m12s
powerai-vision-video-test-nginx-6db8cc78f5-4mdmm	0/1	CrashLoopBackOff	5	6m12s
powerai-vision-video-test-portal-7b487748f4-xmb4r	0/1	Init:0/1	0	6m11s
powerai-vision-video-test-rabmq-b5559b848-dpl6c	1/1	Running	0	6m11s
powerai-vision-video-test-redis-5c9d7f469b-dvq8f	1/1	Running	Θ	6m11s

The powerai-vision-ui pod indicates errors with **nginx**:

```
# /opt/powerai-vision/bin/kubectl.sh logs -f powerai-vision-ui-85494f77f7-4sp8z
2019/03/14 20:46:27 [emerg] 9#9: host not found in upstream "powerai-vision-portal" in /etc/nginx/conf.d/default.co
nginx: [emerg] host not found in upstream "powerai-vision-portal" in /etc/nginx/conf.d/default.co
server {
    listen 80;
```

```
... (more nginx config)
```

And the Kubernetes **coredns** pod shows errors. For instructions to check the status, see "Checking Kubernetes services status" on page 35. Example of the coredns log file:

```
2019-03-03T23:46:37.291137031Z .:53
2019-03-03T23:46:37.291202267Z 2019-03-03T23:46:37.29Z [INFO] CoreDNS-1.2.6
2019-03-03T23:46:37.291212052Z 2019-03-03T23:46:37.29Z [INFO] linux/ppc64le, go1.11.2, 756749c
2019-03-03T23:46:37.29122109Z CoreDNS-1.2.6
2019-03-03T23:46:37.29122966Z linux/ppc64le, go1.11.2, 756749c
2019-03-03T23:46:37.291238056Z [INFO] plugin/reload: Running configuration MD5 = 2e2180a5eeb3ebf92a5100ab081a6381
2019-03-03T23:46:37.291246756Z [FATAL] plugin/loop: Forwarding loop detected in "." zone. Exiting. See https://cor
```

Solution

Ubuntu 18.04 name services do not always create a valid /etc/resolv.conf with a name server specified that provides resolution of hosts to IP addresses, as required by PowerAI Vision. Try one of the following workarounds:

- Create a usable resolvconf package:
 - 1. Install the Ubuntu resolvconf package.
 - 2. Edit the new /etc/resolvconf/resolv.conf.d/head and add at least one valid nameserver x.y.z.a entry.
 - 3. Restart the resolvconf by running service.sudo service resolvconf restart.
- Create a link from /etc/resolv.conf to the correct system resolv.conf. Depending on the service, this could be /run/resolvconf/resolv.conf, /run/systemd/resolvconf/resolv.conf, /etc/resolvconf/run/resolv.conf or /usr/lib/systemd/resolv.conf.

PowerAl Vision fails to start - Kubernetes connection issue

Problem

If the host system does not have a default route defined in the networking configuration, the Kubernetes cluster will fail to start with connection issues. For example:

```
$ sudo /opt/powerai-vision/bin/powerai vision start.sh
INFO: Setting up GPU...
[...]
Checking kubernetes cluster status...
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #1:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #2:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #3:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #4:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #5:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #6:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #7:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #8:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #9:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #10:
The connection to the server 127.0.0.1:8080 was refused - did you specify the right host or port?
INFO: Probing cluster status #11:
ERROR: Retry timeout. Error in starting kubernetes cluster, please check /opt/powerai-vision/log/kubernetes for logs.
```

Solution

Define a default route in the networking configuration.

- For instructions to do this on Ubuntu, refer to the IP addressing section in the Ubuntu Network Configuration. Search for the steps to configure and verify the default gateway.
- For instructions to do this on Red Hat Enterprise Linux (RHEL), refer to 2.2.4 Static Routes and the Default Gateway in the Red Hat Customer Portal.

PowerAl Vision startup hangs - helm issue

Problem

PowerAI Vision startup hangs with the message "Unable to start helm within 30 seconds - trying again." For example:

```
root> sudo /opt/powerai-vision/bin/powerai vision start.sh
Checking ports usage...
Checking ports completed, no confict port usage detected.
[ INFO ] Setting up the GPU...
        Init cuda devices...
        Devices init completed!
        Persistence mode is already Enabled for GPU 00000004:04:00.0.
        Persistence mode is already Enabled for GPU 00000004:05:00.0.
        Persistence mode is already Enabled for GPU 00000035:03:00.0.
        Persistence mode is already Enabled for GPU 00000035:04:00.0.
        All done.
[ INFO ] Starting kubernetes...
        Checking kubernetes cluster status...
        Probing cluster status #1: NotReady
        Probing cluster status #2: NotReady
        Probing cluster status #3: NotReady
        Probing cluster status #4: Ready
        Booting up ingress controller...
        Initializing helm...
         [WARN ] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
         [WARN ] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
          WARN ] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
         [WARN ] Unable to start helm within 30 seconds - trying again. If this continues, contact support.
```

Solution

To solve this problem, you must follow these steps exactly as written:

- 1. Cancel PowerAI Vision startup by pressing ctrl+c.
- Stop PowerAI Vision by running this command: sudo /opt/powerai-vision/bin/powerai vision stop.sh
- **3**. Modify the RHEL settings as follows:

```
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service
```

4. Start PowerAI Vision again:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

If the above commands do not fix the startup issue, check for a cgroup leak that can impact Docker. A Kubernetes/Docker issue can cause this situation, and after fixing the firewall issue the start up can still fail if there was cgroup leakage.

One symptom of this situation is that the df command is slow to respond. To check for excessive cgroup mounts, run the mount command:

\$ mount | grep cgroup | wc -1

If the cgroup count is in thousands, reboot the system to clear up the cgroups.

Helm status errors when starting PowerAl Vision

Problem

There is an issue in some RHEL releases that causes the startup of PowerAI Vision to fail after restarting the host system. When this is the problem, the system tries to initialize Helm at 30 second intervals but never succeeds. Therefore, the startup never succeeds. You can verify this status by running the Helm status vision command:

/opt/powerai-vision/bin/helm status vision

Result:

Error: getting deployed release "vision": Get https://10.10.0.1:443/api/v1/namespaces/kube-system/configmaps[...]: dial tcp 1

Solution

To solve this problem, you must follow these steps exactly as written:

- 1. Cancel PowerAI Vision startup by pressing ctrl+c.
- Stop PowerAI Vision by running this command: sudo /opt/powerai-vision/bin/powerai vision stop.sh
- 3. Modify the RHEL settings as follows:

```
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl stop NetworkManager.service
sudo firewall-cmd --permanent --zone=trusted --change-interface=docker0
sudo systemctl start NetworkManager.service
sudo nmcli connection modify docker0 connection.zone trusted
sudo systemctl restart docker.service
```

4. Start PowerAI Vision again:

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

If the above commands do not fix the startup issue, check for a cgroup leak that can impact Docker. A Kubernetes/Docker issue can cause this situation, and after fixing the firewall issue the start up can still fail if there was cgroup leakage.

One symptom of this situation is that the df command is slow to respond. To check for excessive cgroup mounts, run the mount command:

\$ mount | grep cgroup | wc -1

If the cgroup count is in thousands, reboot the system to clear up the cgroups.

Uploading a large file fails

When uploading files into a data set, there is a 24 GB size limit per upload session. This limit applies to a single .zip file or a set of files. When you upload a large file that is under 24 GB, you might see the upload start (showing a progress bar) but then you get an error message in the user interface. This error happens due to a Nginx timeout, where the file upload is taking longer than the defined 5 minute Nginx timeout.

Despite the notification error, the large file has been uploaded. Refreshing the page will show the uploaded files in the data set.

Some PowerAI Vision functions don't work

Problem

PowerAI Vision seems to start correctly, but some functions, like automatic labeling or automatic frame capture, do not function.

To verify that this is the problem, run /opt/powerai-vision/bin/kubectl.sh get pods and verify that one or more pods are in state CrashLoopBackOff. For example:

$\left(\right)$	kubectl get pods NAME	READY	STATUS	RESTARTS	AGE
ĺ	 powerai-vision-video-rabmq-5d5d786f9f-7jfk9	0/1	CrashLoopBackOff	2	54s

Solution

PowerAI Vision requires IPv6. Enable IPv6 on the system.

Troubleshooting known issues - PowerAI Vision Inference Server

Following are some problems you might encounter when using PowerAI Vision, along with steps to fix them.

- "Problems installing an rpm on a RHEL system with Docker CE"
- "When deploying a model, you get an error that the /decrypt container name is already in use"
- "Unexpected inference result using image with EXIF Orientation"
- "Model fails to deploy with time out message"

Problems installing an rpm on a RHEL system with Docker CE

Problem

When installing an rpm on a RHEL system with Docker CE, you see this error: Failed dependencies: docker is needed by *<file name.*rpm>. For example:

Solution

To install an rpm on a system with Docker CE instead of Docker, force install the rpm by the following command

rpm --nodeps -i file_name.rpm

When deploying a model, you get an error that the /decrypt container name is already in use

Problem

When deploying a model, you get a docker error such as the following:

docker: Error response from daemon: Conflict. The container name "/decrypt" is already in use by container "b)deb17c4651162aaf66 You have to remove (or rename) that container to be able to reuse that name. See 'docker run --help'.

This error can occur if a previous model deployment/decryption was terminated or failed unexpectedly during the deployment/decryption process.

Solution

Remove the Docker image by running the following commands: docker stop decrypt; docker rm decrypt

Unexpected inference result using image with EXIF Orientation

Problem

An unexpected result is received when using the REST API to perform an inference operation when using an image with EXIF Orientation specified. The PowerAI Vision deployed model does not use the EXIF Orientation to perform rotations of the provided image, which may cause an unexpected inference result.

Solution

Rotate the image prior to providing to the REST API for inference. For example, the Linux tool exiftran can be used to rotate the image. Then, pass the rotated image to the REST API for inference.

Model fails to deploy with time out message

Problem

When using deploy_zip_model.sh to deploy a PowerAI Vision model, the action fails with a message "Deployment timed out at 180 seconds".

Solution

This can occur if the GPU specified for the deployment no longer has available memory to

deploy the model. Check the GPU usage by using the nvidia-smi command as described in this topic: "Checking system GPU status" on page 47. For example, if the model failed to deploy to GPU 1, run nvidia-smi -i 1 to check the usage of GPU 0. If there are limited memory resources, stop and delete some of the models currently deployed to the GPU by running these commands:

docker stop <model-name>
docker rm <model-name>

The following output demonstrates a situation where the GPU does not have sufficient memory to deploy the model:

/opt/powerai-vision/dnn-deploy-service/bin/deploy_zip_model.sh -m 8193_cars_custom_COD_model -p 7005 -g 1 /roo chcon: can't apply partial context to unlabeled file '/root/inference-only-testing/new_models/cars-tf-cod.zip' WARNING: This might cause model file permission issue inside container chcon: can't apply partial context to unlabeled file '/tmp/aivision_inference' WARNING: This might cause permission issue inside container

```
Deployment timed out at 180 seconds
[root@dldev4 ~]# nvidia-smi -i 1
Tue Apr 30 14:13:39 2019
```

NVID	IA-SMI	418.2	9 Driver	Version:	418.29	CUDA Versio	on: 10.1
GPU Fan	Name Temp	Perf	Persistence-M Pwr:Usage/Cap	Bus-Id	Disp.A Memory-Usage	Volatile GPU-Util	Uncorr. ECC Compute M.
1 N/A	Tesla 32C	P100-I P0	PCIE Off 31W / 250W	00000000 15919M	0:81:00.0 Off iB / 16280MiB	0%	0 Default

+				+
Proces	ses:			GPU Memory
GPU	PID	Туре	Process name	Usage
=======				
1	13691	С	python	2133MiB
1	17165	С	python	2065MiB
1	17955	С	python	958MiB
1	18832	С	python	742MiB
1	19545	С	python	10009MiB
				+

Troubleshooting known issues - IBM Cloud Private install

Following are some problems you might encounter when using PowerAI Vision in an IBM Cloud Private (ICP) environment, along with steps to fix them.

PowerAl Vision pods do not start - ICP installation

Problem

In an IBM Cloud Private installation, checking the status of the PowerAI Vision pods shows many in ContainerCreating and Init state.

Example:

# kubectl get pods -o wide NAME	READ	Y STATUS		RESTARTS A	GE IP
powerai-vision-icp-keycloak-7bff8db8b-8thfm	0/1	Init:0/1	0	7m	10.1.4
powerai-vision-icp-mongodb-5599969957-pgwvc	0/1	ContainerCreating	0	7m	<none></none>
powerai-vision-icp-portal-6dcc65cfd9-n4fnr	0/1	Init:0/2	0	7m	<none></none>
powerai-vision-icp-postgres-6ffc46dd59-hj6sq	0/1	Running	0	7m	10.1.4
powerai-vision-icp-taskanaly-97dffb698-p5qcg	0/1	ContainerCreating	0	7m	<none></none>
powerai-vision-icp-ui-5d64c856d6-mtzh9	0/1	ContainerCreating	0	7m	<none></none>
powerai-vision-icp-video-nginx-77945f4cc9-9wjjq	0/1	ContainerCreating	0	7m	<none></none>
powerai-vision-icp-video-portal-774c5b799d-sgntt	0/1	Init:0/1	0	7m	<none></none>
powerai-vision-icp-video-rabmq-65bfbc5799-c5knd	0/1	ContainerCreating	0	7m	<none></none>
powerai-vision-icp-video-redis-fb67bb445-5r7s2	1/1	Running	0	7m	10.1.4

<pre>powerai-vision-icp-video-test-nginx-8675b6fd4d-rsf4b</pre>	0/1	Running	0	7m	10.1.44.2
<pre>powerai-vision-icp-video-test-portal-ccbc4c4f8-dxhns</pre>	0/1	Init:0/1	0	7m	<none></none>
<pre>powerai-vision-icp-video-test-rabmq-7bb766c575-214qm</pre>	0/1	ContainerCreating	0	7m	<none></none>
<pre>powerai-vision-icp-video-test-redis-d5ffd75f7-8jjcr</pre>	1/1	Running	0	7m	10.1.44.2

The pod describe output for the pods that are not starting will also show events indicating problems with the underlying storage. For example:

```
Volumes:
```

```
run-mount:
    Type:
                PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
    ClaimName: powerai-vision-icp-data-pvc
    ReadOnly:
                false
  default-token-hz9c4:
                 Secret (a volume populated by a Secret)
    Type:
    SecretName: default-token-hz9c4
    Optional:
                false
OoS Class:
                 BestEffort
Node-Selectors: beta.kubernetes.io/arch=ppc64le
                 node.kubernetes.io/not-ready:NoExecute for 300s
Tolerations:
                 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
  Type
           Reason
                                               From
                        Aae
                                                                    Message
  ----
                        _ _ _ _
                                               ----
                                                                    _____
           _____
  Warning FailedMount 24m (x28 over 103m)
                                               kubelet, 10.10.10.4 Unable to mount volumes for pod "powerai-vision
  Warning FailedMount 5m42s (x59 over 103m) kubelet, 10.10.10.4 (combined from similar events): MountVolume.Set
Mounting command: systemd-run
Mounting arguments: --description=Kubernetes transient mount for /var/lib/kubelet/pods/dbe0edd0-8375-11e9-b64b-1463
Output: Running scope as unit run-9236.scope.
mount.nfs: mounting 10.10.1:/data/nfs/icp failed, reason given by server: No such file or directory
```

Solution

The problem is likely that the persistent volume claim is not being bound to a valid persistent volume.

- Log in to the ICP environment. See "Checking the application status in an ICP installation" on page 34 for instructions.
- 2. Check the status of the storage and ensure that the state is "Bound:" by following the steps in this topic: "Checking Kubernetes storage status" on page 41.
- 3. If the storage is not correctly bound, fix the problem then redeploy the application.

PowerAl Vision Training and Deployed Model pods cannot access GPUs

Problem

When trying to train or deploy a model, the operation fails. Logs gathered may indicate issues with GPU initialization, noted by non-zero cudaSuccess values. For example:

		2		1			
root	: INFO	F0510 14:51:21.103844	23 common.cpp:159]	Check failed: erro	or == cudaSuccess	(3 vs. 0)	in
root	: INFO	*** Check failure stack	trace: ***				
root	: INFO	APPMSG:{'status': 'abor'	ted', 'type': 'statu	s msg'}			

Solution

Ensure that GPUs are visible in the ICP dashboard. If they are, then ensure that the nvidia-container-runtime-hook is not installed on the system:

rpm -qa | grep nvidia-container-runtime-hook nvidia-container-runtime-hook-1.4.0-2.ppc641e

The ICP environment provides a GPU plug-in container, and the nvidia-container-runtime-hook must be uninstalled.

After uninstalling the nvidia-container-runtime-hook, restart the ICP services on the node by following these instructions: .

Important: Before stopping the kubelet and docker service on the node, mark the node as unschedulable. Run the following command: kubectl cordon 9.111.255.122

Note: Marking the node as unschedulable disables scheduling new pods on the node.

1. Shut down the system by stopping the kubelet on the target node by running the following command:

sudo systemctl stop kubelet

Allow the **kubelet** services time to quiesce - this can take up to one minute.

- 2. Stop the docker containers or the docker runtime by running the following command: sudo systemct1 stop docker
- Restart the Docker by running the following command: sudo systemct1 start docker
- 4. Restart the kubelet and ensure that it is running successfully by running the following command:

sudo systemctl start kubelet
sudo systemctl status kubelet

5. If the kubelet service is unsuccessful, view the logs for the kubelet by running the following command:

sudo journalctl -e -u kubelet

 Exit maintenance by running the following command: kubectl uncordon 9.111.255.122

Gather PowerAl Vision logs and contact support

Sometimes you cannot solve a problem by troubleshooting the symptoms. In such cases, you must collect diagnostic data and contact support.

Collecting and inspecting data before you open a problem management record (PMR) can help you to answer the following questions:

- Do the symptoms match any known problems? If so, has a fix or workaround been published?
- Can the problem be identified and resolved without a code fix?
- When does the problem occur?

To gather logs for support, follow these steps:

- 1. Collect logs from the PowerAI Vision application.
 - Standalone installation:
 - Collect the vision-service log: The most useful logs to debug an issue with the application are the vision-service logs. Run this command to collect the logs from the vision-service pod, and output them to a log file that includes a timestamp in the file name for reference:

sudo /opt/powerai-vision/bin/kubectl logs `sudo /opt/powerai-vision/bin/kubectl get pods -o custom-columns=NAME: Collect all logs:

- Collect all logs:

Run the **sudo /opt/powerai-vision/bin/collect_logs.sh** script. The directory where the log file is saved is listed in the **INFO: FFDC Collected** section, as shown in the following example:

```
INFO: Collecting PowerAI Vision Application Logs...
INFO: Collecting PowerAI Infrastructure Logs...
INFO: Collecting configuration information...
INFO: Collecting System Details...
INFO: Collecting Platform Logs...
INFO: FFDC Collected below:
-rw-r--r-. 1 root root 95477342 May 22 18:15 /var/log/powerai-vision/powerai-vision.logs.18_15_11_May_22_2019.tgz
```

The log files to provide are generated here: /tmp/kubectl_logs*.

• IBM Cloud Private installation:

- a. Enable the **kubectl** command. For instructions, see this topic in the IBM Cloud Private Knowledge Center: Accessing your IBM[®] Cloud private cluster by using the kubectl CLI.
- b. **Collect all logs** from the PowerAI Vision pods using the *<release_name>* specified when installing/deploying:

The log files to provide are generated here: /tmp/kubectl_logs*.

c. Collect the vision-service log: The most useful logs to debug an issue with the application are the vision-service logs. Run this command to collect the logs from the vision-service pod, and output them to a log file that includes a timestamp in the file name for reference:

sudo /opt/powerai-vision/bin/kubectl logs `sudo /opt/powerai-vision/bin/kubectl get pods -o custom-columns=NAME:.m

- 2. Optionally, you can obtain the logs for a single pod of the application.
 - a. Use the kubectl get pods command to view the running pods for the application. See "kubectl.sh get pods" on page 37. For example:

<pre>\$ /opt/powerai-vision/bin/kubectl.sh get pods</pre>	5545 7	074700		105
NAME	READY	STATUS	RESTARTS	AGE
powerai-vision-cod-infer-33f53f4e-b6d4-4476-bb19-c16c0e4c0sbtv6	1/1	Running	0	3d1h
powerai-vision-cod-infer-b4d1e503-2f43-4652-9679-650b3ae1b4nkhp	1/1	Running	0	34h
powerai-vision-dnn-infer-f5d2182a-2aae-496c-9688-3d1e7e3977pxr9	1/1	Running	Θ	3d1h
powerai-vision-fpga-device-plugin-bg69p	1/1	Running	0	3d4h
powerai-vision-keycloak-7df657794b-6v4pb	1/1	Running	0	3d4h
powerai-vision-mongodb-6cdc4b654b-c7g99	1/1	Running	0	3d4h
powerai-vision-portal-7fb5d5d66-6tk45	1/1	Running	0	3d4h
powerai-vision-postgres-54d6dbdcf4-zp27c	1/1	Running	0	3d4h
powerai-vision-taskanaly-54bf4f658f-b2hzw	1/1	Running	0	3d4h
powerai-vision-ui-85494f77f7-9wg68	1/1	Running	0	3d4h
powerai-vision-video-nginx-84f4dd84f6-k4tf2	1/1	Running	0	3d4h
powerai-vision-video-portal-59678d77fb-f4qxv	1/1	Running	0	3d4h
powerai-vision-video-rabmq-bb8f588c6-k9spc	1/1	Running	0	3d4h
powerai-vision-video-redis-5dcf7f4b74-q6v86	1/1	Running	0	3d4h
powerai-vision-video-test-nginx-7fb6ff6dd9-b7vz1	1/1	Running	0	3d4h
powerai-vision-video-test-portal-5988b6d66-vpvvk	1/1	Running	0	3d4h
powerai-vision-video-test-rabmq-7c55648476-d7154	1/1	Running	Θ	3d4h
powerai-vision-video-test-redis-f64c589f8-rkzf7	1/1	Running	0	3d4h

b. Run the following command, where <pod-name> is obtained from the kubectl.sh get pods command:

kubectl.sh logs <pod-name> > <outputfile>

For example, using the above output, to collect logs in the file vision-service.log, run the command:

\$ kubectl.sh logs powerai-vision-service-5588ffdffc-cnq8h > vision-service.log

3. Submit the problem to IBM Support in one of the following ways:

- Online through the IBM Support Portal: http://www.ibm.com/software/support/: You can open, update, and view all of your service requests from the Service Request portlet on the Service Request web page.
- By phone: For the phone number to call in your region, see the Directory of worldwide contacts web page: http://www.ibm.com/planetwide/.

Getting fixes from Fix Central

You can use Fix Central to find the fixes that are recommended by IBM Support for various products, including PowerAI Vision. With Fix Central, you can search, select, order, and download fixes for your system with a choice of delivery options. A PowerAI Vision product fix might be available to resolve your problem.

To find and install fixes:

1. Obtain the tools that are required to get the fix. If it is not installed, obtain your product update installer. You can download the installer from Fix Central: http://www.ibm.com/support/fixcentral. This site provides download, installation, and configuration instructions for the update installer.

Note: For more information about how to obtain software fixes, from the Fix Central page, click **Getting started with Fix Central**, then click the Software tab.

- 2. Under Find product, type "PowerAI Vision" in the Product selector field.
- **3**. Select PowerAI Vision. For **Installed version**, select **All**. For **Platform**, select the appropriate platform or select **All**, then click **Continue**.
- 4. Identify and select the fix that is required, then click **Continue**.
- 5. Download the fix. When you download the file, ensure that the name of the maintenance file is not changed, either intentionally or by the web browser or download utility.
- Stop PowerAI Vision by using this script: sudo /opt/powerai-vision/bin/powerai vision stop.sh
- Install the RPM that was downloaded by running this command: sudo yum install ./<fixpack-rpmfile>.rpm
- 8. Log in as root or with sudo privileges, then load the images provided in the TAR file that was downloaded by running this script:

sudo /opt/powerai-vision/bin/load_images.sh ./<fixpack-tarfile>.tar

9. Start PowerAI Vision by running the following script. You must read and accept the license agreement that is displayed before you can use PowerAI Vision.

sudo /opt/powerai-vision/bin/powerai_vision_start.sh

Contacting IBM Support

IBM Support provides assistance with product defects, answers FAQs, and helps users resolve problems with the product.

After trying to find your answer or solution by using other self-help options such as technotes, you can contact IBM Support. Before contacting IBM Support, your company or organization must have an active IBM software maintenance agreement (SWMA), and you must be authorized to submit problems to IBM. For information about the types of available software support, see the Support portfolio topic in the *"Software Support Handbook"*.

To determine what versions of the product are supported, refer to the Software lifecycle page.

To contact IBM Support about a problem:

- 1. Define the problem, gather background information, and determine the severity of the problem. For software support information, see the Getting IBM support topic in the *Software Support Handbook*.
- 2. Gather diagnostic information.
- 3. Submit the problem to IBM Support in one of the following ways:
 - Using IBM Support Assistant (ISA):
 - Online through the IBM Support Portal: You can open, update, and view all of your service requests on the Service Request page.
 - By phone: For the phone number to call in your region, see the Directory of worldwide contacts web page.

If the problem that you submit is for a software defect or for missing or inaccurate documentation, IBM Support creates an Authorized Program Analysis Report (APAR). The APAR describes the problem in detail. Whenever possible, IBM Support provides a workaround that you can implement until the APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the IBM Support website daily, so that other users who experience the same problem can benefit from the same resolution.

Notices

This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follo © (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

JavaTM and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM PowerAI Vision 1.1.3 Release Notes®

Requirements

You must have POWER8[®] S822LC (8335-GTB) or POWER9 AC922 with at least one NVIDIA NVLink capable GPU to run IBM PowerAI Vision. For more information about specific hardware and software requirements, see the "Planning for PowerAI Vision" on page 13 topic.

Installing

You can install PowerAI Vision stand-alone or PowerAI Vision with IBM Cloud Private. For more information, see the "Installing, upgrading, and uninstalling PowerAI Vision" on page 19 topic.

Limitations

The following are the limitations for IBM PowerAI Vision 1.1.3:

- If you import a .zip file into an existing data set, the .zip file cannot contain a directory structure.
- PowerAI Vision uses an entire GPU when you are training a dataset. Multiple GoogleNet or Faster R-CNN models can be deployed to a single GPU. Other types of models take an entire GPU when deployed.

The number of active GPU tasks (model training and deployment) that you can run, at the same time, depends on the number of GPUs on your Power System server. You must verify that there are enough available GPUs on the system for the desired workload. The number of available GPUs is displayed on the user interface.

- You cannot install PowerAI Vision stand-alone on the same system that already has IBM Data Science Experience (DSX), IBM Watson Studio Local, IBM Watson Machine Learning Accelerator, IBM Cloud Private, or any other Kubernetes or Spectrum Conductor based applications installed.
- You must uninstall the technology preview version of PowerAI Vision before you can install PowerAI Vision 1.1.3. For more information, see the "Uninstalling PowerAI Vision stand-alone" on page 31 topic.
Notices

This information was developed for products and services offered in the US.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk. IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright notice as follows:

© (your company name) (year).

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries..

IBM.®

Printed in USA